Osaka Journal of Mathematics

Infinite divisibility of random measures associated to some random Schrödinger operators

Fumihiko Nakano

Full-text: Open access


We study a random measure which describes distribution of eigenvalues and corresponding eigenfunctions of random Schrödinger operators on $L^{2}(\mathbf{R}^{d})$. We show that in the natural scaling every limiting point is infinitely divisible.

Article information

Osaka J. Math., Volume 46, Number 3 (2009), 845-862.

First available in Project Euclid: 26 October 2009

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.) 81Q10: Selfadjoint operator theory in quantum theory, including spectral analysis


Nakano, Fumihiko. Infinite divisibility of random measures associated to some random Schrödinger operators. Osaka J. Math. 46 (2009), no. 3, 845--862.

Export citation


  • M. Aizenman, A. Elgart, S. Naboko, J. Schenker and G. Stolz: Moment analysis for localization in random Schrödinger operators, Invent. Math. 163 (2006), 343–413.
  • J.-M. Combes and P.D. Hislop: Localization for some continuous, random Hamiltonians in $d$-dimensions, J. Funct. Anal. 124 (1994), 149–180.
  • R. Carmona and J. Lacroix: Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, MA, 1990.
  • E. Giere: Spektrale Mittelung und Lokale, Spektrale Eigenschaften Eindimensionaler, Zufälliger Schrödinger-Operatoren, Dissertion, Bochum, 1998.
  • O. Kallenberg: Random measures, fourth edition, Akademie-Verlag, Berlin; Academic Press, Inc., London, 1986.
  • R. Killip and F. Nakano: Eigenfunction statistics in the localized Anderson model, Ann. Henri Poincaré 8 (2007), 27–36.
  • W. Kirsch and F. Martinelli: On the spectrum of Schrödinger operators with a random potential, Comm. Math. Phys. 85 (1982), 329–350.
  • H. Makino and S. Tasaki: Level spacing statistics of classically integrable systems: Investigation along the lines of the Berry-Robnik approach, Phys. Rev. E 67 (2003), 066205.
  • N. Minami: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model, Comm. Math. Phys. 177 (1996), 709–725.
  • S.A. Molčanov: The local structure of the spectrum of the one-dimensional Schrödinger operator, Comm. Math. Phys. 78 (1980/81), 429–446.
  • S. Nakamura: Lectures on Schrödinger Operators, Lectures in Mathematical Sciences, University of Tokyo, 1994.
  • F. Nakano: The repulsion between localization centers in the Anderson model, J. Stat. Phys. 123 (2006), 803–810.
  • F. Nakano: Distribution of localization centers in some discrete random systems, Rev. Math. Phys. 19 (2007), 941–965.
  • B. Simon: Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 447–526.
  • P. Stollmann: Caught by Disorder, Birkhäuser, Boston, MA, 2001.