Osaka Journal of Mathematics

Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces

Yoshihiro Mizuta, Tetsu Shimomura, and Takuya Sobukawa

Full-text: Open access

Abstract

Our aim in this paper is to give Sobolev's inequality and Trudinger exponential integrability for Riesz potentials of functions in non-doubling Morrey spaces.

Article information

Source
Osaka J. Math., Volume 46, Number 1 (2009), 255-271.

Dates
First available in Project Euclid: 25 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1235574047

Mathematical Reviews number (MathSciNet)
MR2277839

Zentralblatt MATH identifier
1186.31003

Subjects
Primary: 31B15: Potentials and capacities, extremal length 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Citation

Mizuta, Yoshihiro; Shimomura, Tetsu; Sobukawa, Takuya. Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), no. 1, 255--271. https://projecteuclid.org/euclid.ojm/1235574047


Export citation

References

  • D.R. Adams: A note on Riesz potentials, Duke Math. J. 42 (1975), 765--778.
  • D.R. Adams and L.I. Hedberg: Function Spaces and Potential Theory, Springer, Berlin, 1996.
  • F. Chiarenza and M. Frasca: Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), 273--279.
  • A. Gogatishvili and P. Koskela: A non-doubling Trudinger inequality, Studia Math. 170 (2005), 113--119.
  • P. Hajłasz and P. Koskela: Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000).
  • L.I. Hedberg: On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505--510.
  • J. Heinonen: Lectures on Analysis on Metric Spaces, Springer, New York, 2001.
  • P. Mattila: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995.
  • Y. Mizuta: Potential Theory in Euclidean Spaces, Gakkōtosho, Tokyo, 1996.
  • Y. Mizuta and T. Shimomura: Continuity and differentiability for weighted Sobolev spaces, Proc. Amer. Math. Soc. 130 (2002), 2985--2994.
  • Y. Mizuta and T. Shimomura: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583--602.
  • Y. Mizuta and T. Shimomura: Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent, to appear in Math. Inequal. Appl.
  • C.B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126--166.
  • J. Orobitg and C. Pérez: $A_{p}$ weights for nondoubling measures in $\mathbf{R}^{n}$ and applications, Trans. Amer. Math. Soc. 354 (2002), 2013--2033.
  • E. Nakai: Generalized fractional integrals on Orlicz-Morrey spaces; in Banach and Function Spaces, Yokohama Publ., Yokohama, 2004, 323--333.
  • W. Orlicz: Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200--211.
  • J. Peetre: On the theory of $L_{p,\lambda}$ spaces, J. Funct. Anal. 4 (1969), 71--87.
  • Y. Sawano: Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas, Hokkaido Math. J. 34 (2005), 435--458.
  • Y. Sawano, T. Sobukawa and H. Tanaka: Limiting case of the boundedness of fractional integral operators on nonhomogeneous space, J. Inequal. Appl. (2006), Art. ID 92470, 16 pp.
  • Y. Sawano and H. Tanaka: Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), 1535--1544.