Osaka Journal of Mathematics

On the distance between two Seifert surfaces of a knot

Makoto Sakuma and Kenneth J. Shackleton

Full-text: Open access

Abstract

For a knot $K$ in $\mathbb{S}^{3}$, Kakimizu introduced a simplicial complex whose vertices are all the isotopy classes of minimal genus spanning surfaces for $K$. The first purpose of this paper is to prove the $1$-skeleton of this complex has diameter bounded by a function quadratic in knot genus, whenever $K$ is atoroidal. The second purpose of this paper is to prove the intersection number of two minimal genus spanning surfaces for $K$ is also bounded by a function quadratic in knot genus, whenever $K$ is atoroidal. As one application, we prove the simple connectivity of Kakimizu's complex among all atoroidal genus $1$ knots.

Article information

Source
Osaka J. Math., Volume 46, Number 1 (2009), 203-221.

Dates
First available in Project Euclid: 25 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1235574044

Mathematical Reviews number (MathSciNet)
MR2531146

Zentralblatt MATH identifier
1177.57006

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 05C12: Distance in graphs

Citation

Sakuma, Makoto; Shackleton, Kenneth J. On the distance between two Seifert surfaces of a knot. Osaka J. Math. 46 (2009), no. 1, 203--221. https://projecteuclid.org/euclid.ojm/1235574044


Export citation

References

  • S.R. Fenley: Quasi-Fuchsian Seifert surfaces, Math. Z. 228 (1998), 221--227.
  • A.E. Hatcher and W.P. Thurston: Incompressible surfaces in $2$-bridge knot complements, Invent. Math. 79 (1985), 225--246.
  • C. Hayashi: The finiteness of the number of minimal Seifert surfaces up to homeomorphism, Kobe J. Math. 10 (1993), 79--105.
  • M. Hirasawa and M. Sakuma: Minimal genus Seifert surfaces for alternating links; in Proceedings of Knots 96, 1997, 383--394.
  • O. Kakimizu: Talk at the meeting ``Knot theory and related topics'' held in Osaka, 1989.
  • O. Kakimizu: Finding disjoint incompressible spanning surfaces for a link, Hiroshima Math. J. 22 (1992), 225--236.
  • O. Kakimizu: Classification of the incompressible spanning surfaces for prime knots of 10 or less crossings, Hiroshima Math. J. 35 (2005), 47--92.
  • T. Kobayashi: Casson-Gordon's rectangle condition of Heegaard diagrams and incompressible tori in $3$-manifolds, Osaka J. Math. 25 (1988), 553--573.
  • T. Kobayashi: Uniqueness of minimal genus Seifert surfaces for links, Topology and its Appl. 33 (1989), 265--279.
  • U. Oertel: On the existence of infinitely many essential surfaces of bounded genus, Pacific J. Math. 202 (2002), 449--458.
  • R.C. Pelayo: E-mail communication, October 2006.
  • R.C. Pelayo: Diameter bounds on the complex of minimal genus Seifert surfaces for hyperbolic Knots, Ph.D. thesis, April 2007, available online from the Caltech Library System at http://resolver.caltech.edu/CaltechETD:etd-06042007-015951.
  • M. Sakuma: Minimal genus Seifert surfaces for special aborescent links, Osaka J. Math. 31 (1994), 861--905.
  • M.G. Scharlemann and A.A. Thompson: Finding disjoint Seifert surfaces, Bull. London Math. Soc. 20 (1988), 61--64.
  • J.C. Schultens: Covering spaces and the Kakimizu complex, arXiv:0707.3926v3.
  • W.P. Thurston: A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), i--vi, 99--130.
  • W.P. Thurston: Three-Dimensional Geometry and Topology, Princeton University Press, 1997.
  • Y. Tsutsumi: Universal bounds for genus one Seifert surfaces for hyperbolic knots and surgeries with non-trivial JSJT-decompositions; in Proceedings of the Winter Workshop of Topology/Workshop of Topology and Computer (Sendai, 2002/Nara, 2001), Interdiscip. Inform. Sci. 9, 2003, 53--60.
  • Y. Tsutsumi: Hyperbolic knots with a large number of disjoint minimal genus Seifert surfaces, Tokyo J. Math. 31 (2008), 253--258.
  • F. Waldhausen: On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56--88.
  • R.T. Wilson: Knots with infinitely many incompressible Seifert surfaces, arXiv:math.GT/0604001.