Osaka Journal of Mathematics

An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II

Toshiki Mabuchi

Full-text: Open access


Recently, Donaldson proved asymptotic stability for a polarized algebraic manifold $M$ with polarization class admitting a Kähler metric of constant scalar curvature, essentially when the linear algebraic part $H$ of $\operatorname{Aut}^{0}(M)$ is semisimple. The purpose of this paper is to give a generalization of Donaldson's result to the case where the polarization class admits an extremal Kähler metric, even when $H$ is not semisimple.

Article information

Osaka J. Math., Volume 46, Number 1 (2009), 115-139.

First available in Project Euclid: 25 February 2009

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14L24: Geometric invariant theory [See also 13A50] 32Q15: Kähler manifolds
Secondary: 32Q20: Kähler-Einstein manifolds [See also 53Cxx] 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)


Mabuchi, Toshiki. An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II. Osaka J. Math. 46 (2009), no. 1, 115--139.

Export citation


  • E. Calabi: Extremal Kähler metrics, II; in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 95--114.
  • D. Catlin: The Bergman kernel and a theorem of Tian; in Analysis and Geometry in Several Complex Variables (Katata, 1997), Birkhäuser, Boston, Boston, MA, 1999, 1--23.
  • S.K. Donaldson: Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479--522.
  • A. Fujiki: The moduli spaces and Kähler metrics of polarized algebraic varieties, Sugaku 42 (1990), 231--243, English translation: Sugaku Expositions 5 (1992), 173--191.
  • A. Futaki and T. Mabuchi: Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math. 6 (2002), 349--372.
  • D. Gieseker: Global moduli for surfaces of general type, Invent. Math. 43 (1977), 233--282.
  • S. Helgason: Differential Geometry and Symmetric Spaces, Pure and Appl. Math. 12, Academic Press, New York, 1962.
  • S. Kobayashi: Transformation Groups in Differential Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
  • A. Lichnérowicz: Isométrie et transformations analytique d'une variété kählérienne compacte, Bull. Soc. Math. France 87 (1959), 427--437.
  • Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235--273.
  • M. Lübke and A. Teleman: The Kobayashi-Hitchin Correspondence, World-Scientific, Singapore, 1995.
  • T. Mabuchi: The Hitchin-Kobayashi correspondence for vector bundles and manifolds; in Proc. 48th Geometry Symposium, Ibaraki, August, 2001, 461--468, (Japanese).
  • T. Mabuchi: An obstruction to asymptotic semistability and approximate critical metrics, Osaka J. Math. 41 (2004), 463--472, arXiv:math.DG/0404210.
  • T. Mabuchi: Stability of extremal Kähler manifolds, Osaka J. Math. 41 (2004), 563--582, arXiv:math.DG/0404211.
  • T. Mabuchi: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I, Invent. Math. 159 (2005), 225--243.
  • T. Mabuchi: Uniqueness of extremal Kähler metrics for an integral Kähler class, Internat. J. Math. 15 (2004), 531--546.
  • T. Mabuchi and Y. Nakagawa: Erratum: The Bando-Calabi-Futaki character as an obstruction to semistability, Math. Ann. 330 (2004), 627--630.
  • D. Mumford: Varieties defined by quadratic equations; in Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Ed. Cremonese, Rome, 1970, 29--100.
  • T. Mabuchi and L. Weng: Kähler-Einstein metrics and Chow-Mumford stability, 1998, preprint.
  • D. Mumford, J. Fogarty and F. Kirwan: Geometric Invariant Theory, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34, Springer, Berlin, 1994.
  • D.H. Phong and J. Sturm: Scalar curvature, moment maps, and the Deligne pairing, arXiv:math.DG/0209098.
  • G. Tian: On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99--130.
  • G. Tian: Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1--37.
  • E. Viehweg: Quasi-Projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 30, Springer, Berlin, 1995.
  • S. Zelditch: Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317--331.
  • S. Zhang: Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77--105.