Osaka Journal of Mathematics
- Osaka J. Math.
- Volume 45, Number 4 (2008), 973-985.
On symplectic quandles
Esteban Adam Navas and Sam Nelson
Abstract
We study the structure of symplectic quandles, quandles which are also $R$-modules equipped with an antisymmetric bilinear form. We show that every finite dimensional symplectic quandle over a finite field $\mathbb{F}$ or arbitrary field $\mathbb{F}$ of characteristic other than 2 is a disjoint union of a trivial quandle and a connected quandle. We use the module structure of a symplectic quandle over a finite ring to refine and strengthen the quandle counting invariant.
Article information
Source
Osaka J. Math., Volume 45, Number 4 (2008), 973-985.
Dates
First available in Project Euclid: 26 November 2008
Permanent link to this document
https://projecteuclid.org/euclid.ojm/1227708829
Mathematical Reviews number (MathSciNet)
MR2493966
Zentralblatt MATH identifier
1168.57011
Subjects
Primary: 176D99 57M27: Invariants of knots and 3-manifolds 55M25: Degree, winding number
Citation
Navas, Esteban Adam; Nelson, Sam. On symplectic quandles. Osaka J. Math. 45 (2008), no. 4, 973--985. https://projecteuclid.org/euclid.ojm/1227708829

