Osaka Journal of Mathematics

On the unipotent support of character sheaves

Meinolf Geck and David Hézard

Full-text: Open access

Abstract

Let $G$ be a connected reductive group over $\mathbb{F}_{q}$, where $q$ is large enough and the center of $G$ is connected. We are concerned with Lusztig's theory of character sheaves, a geometric version of the classical character theory of the finite group $G(\mathbb{F}_{q})$. We show that under a certain technical condition, the restriction of a character sheaf to its unipotent support (as defined by Lusztig) is either zero or an irreducible local system. As an application, the generalized Gelfand-Graev characters are shown to form a $\mathbb{Z}$-basis of the $\mathbb{Z}$-module of unipotently supported virtual characters of $G(\mathbb{F}_{q})$ (Kawanaka's conjecture).

Article information

Source
Osaka J. Math., Volume 45, Number 3 (2008), 819-831.

Dates
First available in Project Euclid: 17 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1221656655

Mathematical Reviews number (MathSciNet)
MR2468596

Zentralblatt MATH identifier
1170.20028

Subjects
Primary: 20C15: Ordinary representations and characters
Secondary: 20G40: Linear algebraic groups over finite fields

Citation

Geck, Meinolf; Hézard, David. On the unipotent support of character sheaves. Osaka J. Math. 45 (2008), no. 3, 819--831. https://projecteuclid.org/euclid.ojm/1221656655


Export citation

References

  • D.I. Deriziotis: The centralizers of semisimple elements of the Chevalley groups $E_{7}$ and $E_{8}$, Tokyo J. Math. 6 (1983), 191–216.
  • D.I. Deriziotis: Conjugacy Classes and Centralizers of Semisimple Elements in Finite Groups of Lie Type, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen 11, Univ. Essen, Essen, 1984.
  • M. Geck: Basic sets of Brauer characters of finite groups of Lie type, III, Manuscripta Math. 85 (1994), 195–216.
  • M. Geck: Character sheaves and generalized Gelfand-Graev characters, Proc. London Math. Soc. (3) 78 (1999), 139–166.
  • M. Geck and G. Malle: On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Trans. Amer. Math. Soc. 352 (2000), 429–456.
  • D. Hézard: Sur le support unipotent des faisceaux-caractères, Ph.D. Thesis, Université Lyon 1, 2004, available at “thesis-ON-line” http://tel.ccsd.cnrs.fr/tel-00012071.
  • N. Kawanaka: Generalized Gelfand-Graev representations and Ennola duality; in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1985, 175–206.
  • N. Kawanaka: Generalized Gelfand-Graev representations of exceptional simple algebraic groups over a finite field, I, Invent. Math. 84 (1986), 575–616.
  • N. Kawanaka: Shintani lifting and Gelfand-Graev representations; in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math. 47, Amer. Math. Soc., Providence, RI, 1987, 147–163.
  • G. Lusztig: Characters of Reductive Groups Over a Finite Field, Ann. of Math. Stud. 107, Princeton Univ. Press, Princeton, NJ, 1984.
  • G. Lusztig: Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), 205–272.
  • G. Lusztig: Character sheaves, Adv. in Math. 56 (1985), 193–237, II, 57 (1985), 226–265, III, 57 (1985), 266–315, IV, 59 (1986), 1–63, V, 61 (1986), 103–155.
  • G. Lusztig: On the character values of finite Chevalley groups at unipotent elements, J. Algebra 104 (1986), 146–194.
  • G. Lusztig: A unipotent support for irreducible representations, Adv. Math. 94 (1992), 139–179.
  • G. Lusztig: Character sheaves and generalizations; in The Unity of Mathematics, Progr. Math. 244, Birkhäuser, Boston, Boston, MA, 2006, 443–455.
  • G. Lusztig: Unipotent classes and special Weyl group representations, preprint (November 2007), available at arXiv:0711.4287.
  • T. Shoji: Character sheaves and almost characters of reductive groups, I, II, Adv. Math. 111 (1995), 244–313, 314–354.
  • N. Spaltenstein: On the generalized Springer correspondence for exceptional groups; in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1985, 317–338.