Osaka Journal of Mathematics

Wegner estimate and localization for random magnetic fields

Naomasa Ueki

Full-text: Open access


Inspired by a work of Hislop and Klopp, we prove precise Wegner estimates for three classes of Schrödinger operators, including Pauli Hamiltonians, with random magnetic fields. The support of the site vector potentials may be noncompact (long-range type random perturbation) and, for one class of the operators, the random vector potentials may be unbounded. In particular Gaussian random fields are also treated. Wegner estimates with correct volume dependence are applied to show Hölder estimates of the densities of states. We give also upper bounds on the infimum of the spectrum to show the existence of the Anderson localization near the infimum.

Article information

Osaka J. Math., Volume 45, Number 3 (2008), 565-608.

First available in Project Euclid: 17 September 2008

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)
Secondary: 35R60: Partial differential equations with randomness, stochastic partial differential equations [See also 60H15] 47B80: Random operators [See also 47H40, 60H25] 47N55 60H25: Random operators and equations [See also 47B80] 82B05: Classical equilibrium statistical mechanics (general)


Ueki, Naomasa. Wegner estimate and localization for random magnetic fields. Osaka J. Math. 45 (2008), no. 3, 565--608.

Export citation


  • F. Bentosela, R.M. Cavalcanti, P. Exner and V.A. Zagrebnov: Anomalous electron trapping by localized magnetic fields, J. Phys. A 32 (1999), 3029--3039.
  • M.Sh. Birman and D.R. Yafaev: The spectral shift function. The work of M.G. Krein and its further development, St. Petersburg Math. J. 4 (1992), 833--870.
  • K. Broderix, D. Hundertmark and H. Leschke: Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys. 12 (2000), 181--225.
  • J.M. Combes, P.D. Hislop, F. Klopp and S. Nakamura: The Wegner estimate and the integrated density of states for some random operators, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), 31--53.
  • J.M. Combes, P.D. Hislop and S. Nakamura: The $L^p$-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random operators, Comm. Math. Phys. 218 (2001), 113--130.
  • J.M. Combes and L. Thomas: Asymptotic behavior of eigenfunctions for multiparticle Schroödinger operators, Comm. Math. Phys. 34 (1973), 251--270.
  • H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon: Schrödinger Operators, Springer, Berlin, Heidelberg, New York, 1987.
  • X. Fernique: Regularité des trajectoires des fonctions aléatoires gaussiennes; in École d'Été de Probabilités de Saint-Flour, IV-1974, Lecture Notes in Math. 480, Springer, Berlin, 1975, 1--96.
  • W. Fischer, H. Leschke and P. Müller, Spectral localization by Gaussian random potentials in multi-dimensional continuous space, J. Statist. Phys. 101 (2000), 935--985.
  • J. Fröhlich and T. Spencer: Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys. 88 (1983), 151--184.
  • F. Germinet and A. Klein: Bootstrap multiscale analysis and localization in random media, Comm. Math. Phys. 222 (2001), 415--448.
  • P.D. Hislop and F. Klopp: The integrated density of states for some random operators with non-sign definite potentials, J. Funct. Anal. 195 (2002), 12--47.
  • T. Hupfer, H. Leschke, P. Müller and S. Warzel: The absolute continuity of the integrated density of states for magnetic Schrödinger operators with certain unbounded random potentials, Comm. Math. Phys. 221 (2001), 229--254.
  • N. Ikeda and S. Watanabe: Stochastic Differential Equations and Diffusion Processes, second edition, Kodansha/North-Holland, Tokyo/Amsterdam, 1989.
  • W. Kirsch, P. Stollmann and G. Stolz: Anderson localization for random Schrödinger operators with long range interactions, Comm. Math. Phys. 195 (1998), 495--507.
  • F. Klopp: Localization for some continuous random Schrödinger operators, Comm. Math. Phys. 167 (1995), 553--569.
  • F. Klopp, S. Nakamura, F. Nakano and Y. Nomura: Anderson localization for 2D discrete Schrödinger operator with random vector potential, Ann. Henri Poincaré 4 (2003), 795--811.
  • V. Kostrykin and I. Veselić: On the Lipschitz continuity of the integrated density of states for sign-indefinite potentials, Math. Z. 252 (2006), 367--392.
  • H. Leinfelder and C.G. Simader: Schrödinger operators with singular magnetic vector potentials, Math. Z. 176 (1981), 1--19.
  • H. Matsumoto: Quadratic Hamiltonians and associated orthogonal polynomials, J. Funct. Anal. 136 (1996), 214--225.
  • H. Matsumoto and N. Ueki: Spectral analysis of Schrödinger operators with magnetic fields, J. Funct. Anal. 140 (1996), 218--255.
  • S. Nakamura: A remark on the Dirichlet-Neumann decoupling and the integrated density of states, J. Funct. Anal. 179 (2001), 136--152.
  • L. Pastur and A. Figotin: Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992.
  • M. Reed and B. Simon: Methods of Modern Mathematical Physics I Functional Analysis, second edition, Academic Press, New York, 1980.
  • M. Reed and B. Simon: Methods of Modern Mathematical Physics II Fourier Analysis, self-adjointness, Academic Press, New York, 1975.
  • B. Simon: Trace Ideals and their Applications, Cambridge University Press, Cambridge-New York, 1979.
  • B. Simon: Functional Integration and Quantum Physics, Academic Press, New York-London, 1979.
  • P. Stollmann: Caught by Disorder, Bound States in Random Media, Birkhäuser, Boston, 2001.
  • N. Ueki: Lifschitz tail of a random Pauli Hamiltonian with an anomalous magnetic moment, Japan. J. Math. 28, (2002), 261--286.
  • N. Ueki: Wegner estimates and localization for Gaussian random potentials, Publ. Res. Inst. Math. Sci. 40 (2004), 29--90.
  • I. Veselić: Wegner estimate and the density of states of some indefinite alloy-type Schrödinger operators, Lett. Math. Phys. 59 (2002), 199--214.
  • F. Wegner: Bounds on the density of states in disordered systems, Z. Phys. B 44 (1981), 9--15.
  • D.R. Yafaev: Mathematical Scattering Theory, General Theory, Amer. Math. Soc., Providence, RI, 1992.