Osaka Journal of Mathematics

Cohomology of the fundamental groups of toroidal groups

Masanori Muta and Takashi Umeno

Full-text: Open access

Abstract

We construct an isomorphism between the $\overline{\partial}$-cohomology and the cohomology of the fundamental groups of toroidal groups, and get a standard form of $p$-cocycles, which was given by Vogt [6] in case of $1$-cocycles. Using differential forms via the above isomorphism enables us to obtain new results in higher dimensional cases. An explicit isomorphism between the Čech cohomology and the cohomology of the fundamental groups of complex tori is given in [5] (p.14). Our results give a generalization of this isomorphism to toroidal groups.

Article information

Source
Osaka J. Math., Volume 44, Number 3 (2007), 505-530.

Dates
First available in Project Euclid: 13 September 2007

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1189717420

Mathematical Reviews number (MathSciNet)
MR2360938

Zentralblatt MATH identifier
1141.22003

Subjects
Primary: 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10]

Citation

Muta, Masanori; Umeno, Takashi. Cohomology of the fundamental groups of toroidal groups. Osaka J. Math. 44 (2007), no. 3, 505--530. https://projecteuclid.org/euclid.ojm/1189717420


Export citation

References

  • H. Kazama: $\overline\partial$ cohomology of $(H,C)$-groups, Publ. Res. Inst. Math. Sci. 20 (1984), 297--317.
  • H. Kazama and K.H. Shon: Characterizations of the $\overline\partial$-cohomology groups for a family of weakly pseudoconvex manifolds, J. Math. Soc. Japan 39 (1987), 685--700.
  • H. Kazama and T. Umeno: Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan 36 (1984), 91--106.
  • H. Kazama and T. Umeno: $\overline\partial$ cohomology of complex Lie groups, Publ. Res. Inst. Math. Sci. 26 (1990), 473--484.
  • D. Mumford: Abelian Varieties, Oxford Univ. Press, London, 1970.
  • C. Vogt: Line bundles on toroidal groups, J. Reine Angew. Math. 335 (1982), 197--215.
  • C. Vogt: Two remarks concerning toroidal groups, Manuscripta Math. 41 (1983), 217--232.