Osaka Journal of Mathematics

A note on compact solvmanifolds with Kähler structures

Keizo Hasegawa

Full-text: Open access

Abstract

In this note we show that a compact solvmanifold admits a Kähler structure if and only if it is a finite quotient of a complex torus which has a structure of a complex torus bundle over a complex torus. We can show in particular that a compact solvmanifold of completely solvable type has a Kähler structure if and only if it is a complex torus, which is known as the Benson-Gordon's conjecture.

Article information

Source
Osaka J. Math., Volume 43, Number 1 (2006), 131-135.

Dates
First available in Project Euclid: 28 April 2006

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1146242998

Mathematical Reviews number (MathSciNet)
MR2222405

Zentralblatt MATH identifier
1105.32017

Subjects
Primary: 32Q15: Kähler manifolds 32M10: Homogeneous complex manifolds [See also 14M17, 57T15]
Secondary: 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15] 53D05: Symplectic manifolds, general

Citation

Hasegawa, Keizo. A note on compact solvmanifolds with Kähler structures. Osaka J. Math. 43 (2006), no. 1, 131--135. https://projecteuclid.org/euclid.ojm/1146242998


Export citation

References

  • J. Amorós, M Burger, K. Corlette, D. Kotschick and D. Toledo: Fundamental Groups of Compact Kähler Manifolds, American Mathematical Society, 1996.
  • D. Arapura: Kähler solvmanifolds, Int. Math. Res. Not. 2004 (2004), 131--137.
  • D. Arapura and M. Nori: Solvable fundamental groups of algebraic varieties and Kähler manifolds, Compositio Math. 116 (1999), 173--188.
  • L. Auslander: Discrete uniform subgroups of solvable Lie groups, Trans. Amer. Math. Soc. 99 (1961), 398--402.
  • L. Auslander: An exposition of the structure of solvmanifolds I, II, Bull. Amer. Math. Soc. 79 (1973), 227--261, 262--285.
  • L. Auslander and M. Auslander: Solvable Lie groups and locally Euclidean Riemannian spaces, Proc. Amer. Math. Soc. 9 (1958), 933--941.
  • L. Auslander and H. Szczarba: Vector bundles over noncompact solvmanifolds, Amer. J. of Math. 97 (1975), 260--281.
  • W. Barth, C. Peters and A. Van de Ven: Compact Complex Surfaces, Springer-Verlag, Berlin, 1984.
  • C. Benson and C.S. Gordon: Kähler and symplectic structures on nilmanifolds, Topology, 27 (1988), 755--782.
  • C. Benson and C.S. Gordon: Kähler structures on compact solvmanifolds, Proc. Amer. Math. Soc. 108 (1990), 971--980.
  • A. Brudnyi: Solvable matrix representations of Kähler groups, Differential Geometry and its Applications, 19 (2003), 167--191.
  • F. Campana: Remarques sur les groupes de Kähler nilpotents, Ann. Sci. École Norm. Sup. 28 (1995), 307--316.
  • A. Fujiki: Coarse Moduli space for polarized compact Kähler manifolds, Publ. RIMS, Kyoto Univ. 20 (1984), 977--1005.
  • K. Hasegawa: Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65--71.
  • K. Hasegawa: A class of compact Kählerian solvmanifolds and a general conjecture, Geometriae Dedicata, 78 (1999), 253--258.
  • K. Hasegawa: Complex and Kähler structures on compact solvmanifolds, to appear in J. Symplectic Geom., the Stare Jablonki Conference Proceedings.
  • A. Morgan: The classification of flat solvmanifolds, Trans. Amer. Math. Soc. 239 (1978), 321--351.
  • G.D. Mostow: Factor spaces of solvable Lie groups, Ann. of Math. 60 (1954), 1--27.
  • H.C. Wang: Discrete subgroups of solvable Lie groups I, Ann. of Math. 64 (1956), 1--19.