Nagoya Mathematical Journal

On certain mean values of the double zeta-function

Soichi Ikeda, Kaneaki Matsuoka, and Yoshikazu Nagata

Full-text: Open access

Abstract

In this article we discuss three types of mean values of the Euler double zeta-function. To get the results, we introduce three approximate formulas for this function.

Article information

Source
Nagoya Math. J., Volume 217 (2015), 161-190.

Dates
First available in Project Euclid: 6 May 2015

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1430939250

Digital Object Identifier
doi:10.1215/00277630-2888210

Mathematical Reviews number (MathSciNet)
MR3343842

Zentralblatt MATH identifier
1369.11066

Subjects
Primary: 11M32: Multiple Dirichlet series and zeta functions and multizeta values
Secondary: 11M06: $\zeta (s)$ and $L(s, \chi)$

Keywords
double zeta function mean value

Citation

Ikeda, Soichi; Matsuoka, Kaneaki; Nagata, Yoshikazu. On certain mean values of the double zeta-function. Nagoya Math. J. 217 (2015), 161--190. doi:10.1215/00277630-2888210. https://projecteuclid.org/euclid.nmj/1430939250


Export citation

References

  • [1] S. Akiyama, S. Egami, and Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), 107–116.
  • [2] F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81 (1949), 353–376.
  • [3] H. M. Edwards, Riemann’s Zeta Function, Pure Appl. Math. 58, Academic Press, New York, 1974.
  • [4] M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275–290.
  • [5] A. Ivić, The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications, Wiley-Intersci. Publ., Wiley, New York, 1985.
  • [6] I. Kiuchi and Y. Tanigawa, Bounds for double zeta-functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), 445–464.
  • [7] I. Kiuchi, Y. Tanigawa, and W. Zhai, Analytic properties of double zeta-functions, Indag. Math. (N.S.) 21 (2011), 16–29.
  • [8] K. Matsumoto, “On the analytic continuation of various multiple zeta-functions” in Number Theory for the Millennium, II (Urbana, 2000), A. K. Peters, Natick, Mass., 2002, 417–440.
  • [9] K. Matsumoto, Functional equations for double zeta-functions, Math. Proc. Cambridge Philos. Soc. 136 (2004), 1–7.
  • [10] K. Matsumoto and H. Tsumura, Mean value theorems for the double zeta-function, J. Math. Soc. Japan 67 (2015), 383–406.
  • [11] S. Shimomura, Fourth moment of the Riemann zeta-function with a shift along the real line, Tokyo J. Math. 36 (2013), 355–377.
  • [12] E. C. Titchmarsh, The Theory of Functions, reprint of the 2nd ed., Oxford University Press, Oxford, 1958.
  • [13] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University Press, New York, 1986.
  • [14] D. Zagier, “Values of zeta-functions and their applications” in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math. 120, Birkhäuser, Basel, 1994, 497–512.
  • [15] J. Q. Zhao, Analytic continuation of multiple zeta function, Proc. Amer. Math. Soc. 128 (2000), 1275–1283.