Nagoya Mathematical Journal

Centrally symmetric configurations of integer matrices

Hidefumi Ohsugi and Takayuki Hibi

Full-text: Open access

Abstract

The concept of centrally symmetric configurations of integer matrices is introduced. We study the problem when the toric ring of a centrally symmetric configuration is normal and when it is Gorenstein. In addition, Gröbner bases of toric ideals of centrally symmetric configurations are discussed. Special attention is given to centrally symmetric configurations of unimodular matrices and to those of incidence matrices of finite graphs.

Article information

Source
Nagoya Math. J., Volume 216 (2014), 153-170.

Dates
First available in Project Euclid: 20 January 2015

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1421763195

Digital Object Identifier
doi:10.1215/00277630-2857555

Mathematical Reviews number (MathSciNet)
MR3319842

Zentralblatt MATH identifier
1353.13034

Subjects
Primary: 13P10: Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
Secondary: 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx]

Citation

Ohsugi, Hidefumi; Hibi, Takayuki. Centrally symmetric configurations of integer matrices. Nagoya Math. J. 216 (2014), 153--170. doi:10.1215/00277630-2857555. https://projecteuclid.org/euclid.nmj/1421763195


Export citation

References

  • [1] F. Ardila, M. Beck, S. Hoşten, J. Pfeifle, and K. Seashore, Root polytopes and growth series of root lattices, SIAM J. Discrete Math. 25 (2011), 360–378.
  • [2] CoCoATeam, CoCoA: A System for Doing Computations in Commutative Algebra, http://cocoa.dima.unige.it (accessed 29 December 2014).
  • [3] E. De Negri and T. Hibi, Gorenstein algebras of Veronese type, J. Algebra 193 (1997), 629–639.
  • [4] J. W. Grossman, D. M. Kulkarni, and I. E. Schochetman, On the minors of an incidence matrix and its Smith normal form, Linear Algebra Appl. 218 (1995), 213–224.
  • [5] T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publications, Glebe, Australia, 1992.
  • [6] H. Ohsugi, A geometric definition of combinatorial pure subrings and Gröbner bases of toric ideals of positive roots, Comment. Math. Univ. St. Pauli 56 (2007), 27–44.
  • [7] H. Ohsugi, J. Herzog, and T. Hibi, Combinatorial pure subrings, Osaka J. Math. 37 (2000), 745–757.
  • [8] H. Ohsugi and T. Hibi, Normal polytopes arising from finite graphs, J. Algebra 207 (1998), 409–426.
  • [9] H. Ohsugi and T. Hibi, Koszul bipartite graphs, Adv. in Appl. Math. 22 (1999), 25–28.
  • [10] H. Ohsugi and T. Hibi, Toric ideals generated by quadratic binomials, J. Algebra 218 (1999), 509–527.
  • [11] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986.
  • [12] B. Sturmfels, Gröbner Bases and Convex Polytopes, Univ. Lecture Ser. 8, Amer. Math. Soc., Providence, 1996.