Nagoya Mathematical Journal

On the uniform spread of almost simple linear groups

Timothy C. Burness and Simon Guest

Full-text: Open access

Abstract

Let G be a finite group, and let k be a nonnegative integer. We say that G has uniform spread k if there exists a fixed conjugacy class C in G with the property that for any k nontrivial elements x1,,xk in G there exists yC such that G=xi,y for all i. Further, the exact uniform spread of G, denoted by u(G), is the largest k such that G has the uniform spread k property. By a theorem of Breuer, Guralnick, and Kantor, u(G)2 for every finite simple group G. Here we consider the uniform spread of almost simple linear groups. Our main theorem states that if G=PSLn(q),g is almost simple, then u(G)2 (unless GS6), and we determine precisely when u(G) tends to infinity as |G| tends to infinity.

Article information

Source
Nagoya Math. J., Volume 209 (2013), 35-109.

Dates
First available in Project Euclid: 27 February 2013

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1361976372

Digital Object Identifier
doi:10.1215/00277630-1959460

Mathematical Reviews number (MathSciNet)
MR3032138

Zentralblatt MATH identifier
1271.20012

Subjects
Primary: 20D06: Simple groups: alternating groups and groups of Lie type [See also 20Gxx]
Secondary: 20E28: Maximal subgroups 20F05: Generators, relations, and presentations 20P05: Probabilistic methods in group theory [See also 60Bxx]

Citation

Burness, Timothy C.; Guest, Simon. On the uniform spread of almost simple linear groups. Nagoya Math. J. 209 (2013), 35--109. doi:10.1215/00277630-1959460. https://projecteuclid.org/euclid.nmj/1361976372


Export citation

References

  • [1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), 469–514.
  • [2] M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1–91.
  • [3] G. J. Binder, The two-element bases of the symmetric group, Izv. Vysš. Učebn. Zaved. Mat. 90 (1970), 9–11.
  • [4] W. Bosma and J. J. Cannon, Handbook of Magma Functions, School of Mathematics and Statistics, University of Sydney, Sydney, 1995.
  • [5] J. N. Bray, D. F. Holt, and C. M. Roney–Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, to appear in London Math. Soc. Lecture Note Ser., Cambridge University Press.
  • [6] J. L. Brenner and J. Wiegold, Two-generator groups, I, Michigan Math. J. 22 (1975), 53–64.
  • [7] T. Breuer, R. M. Guralnick, and W. M. Kantor, Probabilistic generation of finite simple groups, II, J. Algebra 320 (2008), 443–494.
  • [8] T. Breuer, R. M. Guralnick, A. Lucchini, A. Maróti, and G. P. Nagy, Hamiltonian cycles in the generating graph of finite groups, Bull. Lond. Math. Soc. 42 (2010), 621–633.
  • [9] T. C. Burness, Fixed point ratios in actions of finite classical groups, I, J. Algebra 309 (2007), 69–79.
  • [10] T. C. Burness, Fixed point ratios in actions of finite classical groups, II, J. Algebra 309 (2007), 80–138.
  • [11] T. C. Burness, Fixed point ratios in actions of finite classical groups, III, J. Algebra 314 (2007), 693–748.
  • [12] T. C. Burness, Fixed point ratios in actions of finite classical groups, IV, J. Algebra 314 (2007), 749–788.
  • [13] J. J. Cannon and D. F. Holt, Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput. 35 (2003), 241–267.
  • [14] J. J. Cannon and D. F. Holt, Computing maximal subgroups of finite groups, J. Symbolic Comput. 37 (2004), 589–609.
  • [15] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham, 1985.
  • [16] F. Dalla Volta and A. Lucchini, Generation of almost simple groups, J. Algebra 178 (1995), 194–223.
  • [17] M. R. Darafsheh, Orders of elements in the groups related to the general linear group, Finite Fields Appl. 11 (2005), 738–747.
  • [18] J. D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969), 199–205.
  • [19] J. Fulman and R. Guralnick, Conjugacy class properties of the extension of $\operatorname{GL} (n,q)$ generated by the inverse transpose involution, J. Algebra 275 (2004), 356–396.
  • [20] D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic $2$ type, Mem. Amer. Math. Soc. 42 (1983), no. 276.
  • [21] D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups, Math. Surveys Monogr. 40, Amer. Math. Soc., Providence, 1994.
  • [22] R. M. Guralnick, The spread of finite groups, in preparation.
  • [23] R. M. Guralnick and W. M. Kantor, Probabilistic generation of finite simple groups, J. Algebra 234 (2000), 743–792.
  • [24] R. M. Guralnick and G. Malle, Products of conjugacy classes and fixed point spaces, J. Amer. Math. Soc. 25 (2012), 77–121.
  • [25] R. Guralnick, T. Pentilla, C. E. Praeger, and J. Saxl, Linear groups with orders having certain large prime divisors, Proc. Lond. Math. Soc. (3) 78 (1999), 167–214.
  • [26] R. M. Guralnick and J. Saxl, Generation of finite almost simple groups by conjugates, J. Algebra 268 (2003), 519–571.
  • [27] R. M. Guralnick and A. Shalev, On the spread of finite simple groups, Combinatorica 23 (2003), 73–87.
  • [28] G. Hiss and G. Malle, Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math. 4 (2001), 22–63.
  • [29] C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters, London Math. Soc. Monogr. Ser. (N.S.) 11 Oxford University Press, New York, 1995.
  • [30] W. M. Kantor, Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc. 248, no. 2 (1979), 347–379.
  • [31] W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Dedicata 36 (1990), 67–87.
  • [32] N. Kawanaka, On the irreducible characters of the finite unitary groups, J. Math. Soc. Japan 29 (1977), 425–450.
  • [33] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser. 129, Cambridge University Press, Cambridge, 1990.
  • [34] M. W. Liebeck, The classification of finite simple Moufang loops, Math. Proc. Cambridge Philos. Soc. 102 (1987), 33–47.
  • [35] M. W. Liebeck and J. Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. Lond. Math. Soc. (3) 63 (1991), 266–314.
  • [36] M. W. Liebeck and A. Shalev, The probability of generating a finite simple group, Geom. Dedicata 56 (1995), 103–113.
  • [37] M. W. Liebeck and A. Shalev, Classical groups, probabilistic methods, and the $(2,3)$-generation problem, Ann. of Math. (2) 144 (1996), 77–125.
  • [38] M. W. Liebeck and A. Shalev, Simple groups, permutation groups, and probability, J. Amer. Math. Soc. 12 (1999), 497–520.
  • [39] M. W. Liebeck and A. Shalev, Random $(r,s)$-generation of finite classical groups, Bull. Lond. Math. Soc. 34 (2002), 185–188.
  • [40] F. Lübeck and G. Malle, $(2,3)$-generation of exceptional groups, J. Lond. Math. Soc. (2) 59 (1999), 109–122.
  • [41] A. Lucchini and F. Menegazzo, Generators for finite groups with a unique minimal normal subgroup, Rend. Semin. Mat. Univ. Padova 98 (1997), 173–191.
  • [42] S. Ramanujan, “A proof of Bertrand’s postulate” in Collected Papers of Srinivasa Ramanujan, AMS Chelsea, Providence, 2000, 208–209. MR2280867.
  • [43] A. Shalev, Random generation of finite simple groups by $p$-regular or $p$-singular elements, Israel J. Math. 125 (2001), 53–60.
  • [44] K. Shinoda, The characters of the finite conformal symplectic group, $\operatorname{CSp} (4,q)$, Comm. Algebra 10 (1982), 1369–1419.
  • [45] R. Steinberg, Generators for simple groups, Canad. J. Math. 14 (1962), 277–283.
  • [46] R. Steinberg, Lectures on Chevalley Groups, Yale University Press, New Haven, 1968.
  • [47] G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Aust. Math. Soc. 3 (1963), 1–62.
  • [48] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265–284.