Nagoya Mathematical Journal

Ordinary varieties and the comparison between multiplier ideals and test ideals

Mircea Mustaţă and Vasudevan Srinivas

Full-text: Open access

Abstract

We consider the following conjecture: if X is a smooth and irreducible n-dimensional projective variety over a field k of characteristic zero, then there is a dense set of reductions Xs to positive characteristic such that the action of the Frobenius morphism on Hn(Xs,OXs) is bijective. There is another conjecture relating certain invariants of singularities in characteristic zero (the multiplier ideals) with invariants in positive characteristic (the test ideals). We prove that the former conjecture implies the latter one in the case of ambient nonsingular varieties.

Article information

Source
Nagoya Math. J., Volume 204 (2011), 125-157.

Dates
First available in Project Euclid: 5 December 2011

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1323107839

Digital Object Identifier
doi:10.1215/00277630-1431849

Mathematical Reviews number (MathSciNet)
MR2863367

Zentralblatt MATH identifier
1239.14011

Subjects
Primary: 13A35: Characteristic p methods (Frobenius endomorphism) and reduction to characteristic p; tight closure [See also 13B22]
Secondary: 14F18: Multiplier ideals 14F30: $p$-adic cohomology, crystalline cohomology

Citation

Mustaţă, Mircea; Srinivas, Vasudevan. Ordinary varieties and the comparison between multiplier ideals and test ideals. Nagoya Math. J. 204 (2011), 125--157. doi:10.1215/00277630-1431849. https://projecteuclid.org/euclid.nmj/1323107839


Export citation

References

  • [BMS] M. Blickle, M. Mustaţă, and K. E. Smith, Discreteness and rationality of F-thresholds, Michigan Math. J. 57 (2008), 463–483.
  • [BSTZ] M. Blickle, K. Schwede, S. Takagi, and W. Zhang, Discreteness and rationality of F-jumping numbers on singular varieties, Math. Ann. 347 (2010), 917–949.
  • [BK] S. Bloch and K. Kato, p-adic étale cohomology, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 107–152.
  • [CL] A. Chambert-Loir, Cohomologie cristalline: un survol, Expo. Math. 16 (1998), 333–382.
  • [DI] P. Deligne and L. Illusie, Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247–270.
  • [Eis] D. Eisenbud, Commutative Algebra. With a View toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, New York, 1995.
  • [Ha] N. Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), 981–996.
  • [HW] N. Hara and K. Watanabe, F-regular and F-pure rings vs. log terminal and log canonical singularities, J. Algebraic Geom. 11 (2002), 363–392.
  • [HY] N. Hara and K. Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), 3143–3174.
  • [Hart] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • [KKMS] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Math. 339, Springer, Berlin, 1973.
  • [Laz] R. Lazarsfeld, Positivity in Algebraic Geometry, II, Ergeb. Math. Grenzgeb. (3), Folge 49, Springer, Berlin, 2004.
  • [LLS] R. Lazarsfeld, K. Lee, and K. E. Smith, Syzygies of multiplier ideals on singular varieties, Michigan Math. J. 57 (2008), 511–521.
  • [MS] V. B. Mehta and V. Srinivas, A characterization of rational singularities, Asian J. Math. 1 (1997), 249–271.
  • [Mus] M. Mustaţă, Bernstein-Sato polynomials in positive characteristic, J. Algebra 321 (2009), 128–151.
  • [MTW] M. Mustaţă, S. Takagi, and K. Watanabe, “F-thresholds and Bernstein-Sato polynomials” in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, 341–364.
  • [Og] A. Ogus, “Hodge cycles and crystalline cohomology” in Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math. 900, Springer, Berlin, 357–414.
  • [Sch] K. Schwede, F-adjunction, Algebra Number Theory 3 (2009), 907–950.
  • [ST] K. Schwede and K. Tucker, On the behavior of test ideals under finite morphisms, preprint, arXiv:1003.4333v2 [math.AG]
  • [Smi] K. E. Smith, F-rational rings have rational singularities, Amer. J. Math. 119 (1997), 159–180.