Nagoya Mathematical Journal

Stickelberger elements and Kolyvagin systems

Kâzım Büyükboduk

Full-text: Open access


In this paper, we construct (many) Kolyvagin systems out of Stickelberger elements utilizing ideas borrowed from our previous work on Kolyvagin systems of Rubin-Stark elements. The applications of our approach are twofold. First, assuming Brumer’s conjecture, we prove results on the odd parts of the ideal class groups of CM fields which are abelian over a totally real field, and we deduce Iwasawa’s main conjecture for totally real fields (for totally odd characters). Although this portion of our results has already been established by Wiles unconditionally (and refined by Kurihara using an Euler system argument, when Wiles’s work is assumed), the approach here fits well in the general framework the author has developed elsewhere to understand Euler/Kolyvagin system machinery when the core Selmer rank is r>1 (in the sense of Mazur and Rubin). As our second application, we establish a rather curious link between the Stickelberger elements and Rubin-Stark elements by using the main constructions of this article hand in hand with the “rigidity” of the collection of Kolyvagin systems proved by Mazur, Rubin, and the author.

Article information

Nagoya Math. J., Volume 203 (2011), 123-173.

First available in Project Euclid: 18 August 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R23: Iwasawa theory 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27]
Secondary: 11R27: Units and factorization 11R29: Class numbers, class groups, discriminants 11R34: Galois cohomology [See also 12Gxx, 19A31]


Büyükboduk, Kâzım. Stickelberger elements and Kolyvagin systems. Nagoya Math. J. 203 (2011), 123--173. doi:10.1215/00277630-1331890.

Export citation


  • [B1] K. Büyükboduk, Kolyvagin systems of Stark units, J. Reine Angew. Math. 631 (2009), 85–107.
  • [B2] K. Büyükboduk, Stark units and the main conjectures for totally real fields, Compos. Math. 145 (2009), 1163–1195.
  • [B3] K. Büyükboduk, Λ-adic Kolyvagin systems, Int. Math. Res. Notices (2010), doi: 10:1093/ imrn/rnq186.
  • [B4] K. Büyükboduk, On Euler systems of rank r and their Kolyvagin systems, Indiana Univ. Math. J. 59 (2010), 1245–1276.
  • [C] P. Colmez, Théorie d’Iwasawa des représentations de de Rham d’un corps local, Ann. of Math. (2) 148 (1998), 485–571.
  • [DR] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227–286.
  • [dS] E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication, Perspect. Math. 3, Academic Press, Boston, 1987.
  • [G] R. Greenberg, “Trivial zeros of p-adic L-functions” in p-Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture (Boston, MA, 1991), Contemp. Math. 165, Amer. Math. Soc., Providence, 1994, 149–174.
  • [Gr] C. Greither, Computing fitting ideals of Iwasawa modules, Math. Z. 246 (2004), 733–767.
  • [Ka] K. Kato, Euler systems, Iwasawa theory, and Selmer groups, Kodai Math. J. 22 (1999), 313–372.
  • [Ku] M. Kurihara, On the structure of ideal class groups of CM-fields, Doc. Math. DMV Extra Vol (2003), 539–563.
  • [MR1] B. Mazur and K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004), viii+96.
  • [MR2] B. Mazur and K. Rubin, Refined class number formulas and Kolyvagin systems, preprint, arXiv:0909.3916v1 [math.NT]
  • [Mi] J. S. Milne, Arithmetic Duality Theorems, Perspect. Math. 1, Academic Press, Boston, 1986.
  • [P1] B. Perrin-Riou, Théorie d’Iwasawa des représentations p-adiques sur un corps local, with an appendix by J.-M. Fontaine, Invent. Math. 115 (1994), 81–161.
  • [P2] B. Perrin-Riou, Systèmes d’Euler p-adiques et théorie d’Iwasawa, Ann. Inst. Fourier (Grenoble) 48 (1998), 1231–1307.
  • [R1] K. Rubin, Stark units and Kolyvagin’s “Euler systems,” J. Reine Angew. Math. 425 (1992), 141–154.
  • [R2] K. Rubin, A Stark conjecture “over Z for abelian L-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), 33–62.
  • [R3] K. Rubin, Euler Systems, Ann. of Math. Stud. 147, Princeton University Press, Princeton, 2000.
  • [S] C. L. Siegel, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970, 15–56.
  • [T] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Progr. Math. 47, Birkhäuser, Boston, 1984.
  • [W1] A. Wiles, On a conjecture of Brumer, Ann. of Math. (2) 131 (1990), 555–565.
  • [W2] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493–540.