Nagoya Mathematical Journal

The norm of a Ree group

Tom De Medts and Richard M. Weiss

Full-text: Open access

Abstract

We give an explicit construction of the Ree groups of type G2 as groups acting on mixed Moufang hexagons together with detailed proofs of the basic properties of these groups contained in the two fundamental papers of Tits on this subject (see [7] and [8]). We also give a short proof that the norm of a Ree group is anisotropic.

Article information

Source
Nagoya Math. J., Volume 199 (2010), 15-41.

Dates
First available in Project Euclid: 14 September 2010

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1284471569

Digital Object Identifier
doi:10.1215/00277630-2010-002

Mathematical Reviews number (MathSciNet)
MR2730410

Zentralblatt MATH identifier
1220.20020

Subjects
Primary: 20E42: Groups with a $BN$-pair; buildings [See also 51E24] 51E12: Generalized quadrangles, generalized polygons 51E24: Buildings and the geometry of diagrams

Citation

De Medts, Tom; Weiss, Richard M. The norm of a Ree group. Nagoya Math. J. 199 (2010), 15--41. doi:10.1215/00277630-2010-002. https://projecteuclid.org/euclid.nmj/1284471569


Export citation

References

  • [1] T. De Medts and R. M. Weiss, Moufang sets and Jordan division algebras, Math. Ann. 335 (2006), 415–433.
  • [2] R. M. Guralnick, W. M. Kantor, M. Kassabov, and A. Lubotzky, Presentations of finite simple groups: A quantitative approach, J. Amer. Math. Soc. 21 (2008), 711–774.
  • [3] P. Hitzelberger, L. Kramer, and R. M. Weiss, Non-discrete Euclidean buildings for the Ree and Suzuki groups, to appear in Amer. J. Math., preprint, arXiv:math/0810.2725 [math.GR]
  • [4] G. Kemper, F. Lübeck, and K. Magaard, Matrix generators for the Ree groups 2G2(q), Comm. Algebra 29 (2001), 407–413.
  • [5] R. Ree, A family of simple groups associated with the simple Lie algebra of type (G2), Amer. J. Math. 83 (1961), 432–462.
  • [6] J. Tits, Algebraic and abstract simple groups, Ann. Math. 80 (1964), 313–329.
  • [7] J. Tits, Moufang octagons and Ree groups of type F4, Amer. J. Math. 105 (1983), 539–594.
  • [8] J. Tits, “Les groupes simples de Suzuki et de Ree” in Séminaire Bourbaki, Vol. 6 (1960/1961), no. 210, Soc. Math. France, Paris, 1995, 65–82.
  • [9] J. Tits and R. M. Weiss, Moufang Polygons, Springer, Berlin, 2002.
  • [10] H. Van Maldeghem, Generalized Polygons, Birkhäuser, Basel, 1998.