Nagoya Mathematical Journal

Module structure of cells in unequal-parameter Hecke algebras

Thomas Pietraho

Full-text: Open access

Abstract

A conjecture of Bonnafé, Geck, Iancu, and Lam parametrizes Kazhdan-Lusztig left cells for unequal-parameter Hecke algebras in type Bn by families of standard domino tableaux of arbitrary rank. Relying on a family of properties outlined by Lusztig and the recent work of Bonnafé, we verify the conjecture and describe the structure of each cell as a module for the underlying Weyl group.

Article information

Source
Nagoya Math. J., Volume 198 (2010), 23-45.

Dates
First available in Project Euclid: 10 May 2010

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1273496984

Digital Object Identifier
doi:10.1215/00277630-2009-006

Mathematical Reviews number (MathSciNet)
MR2666576

Zentralblatt MATH identifier
1233.20006

Subjects
Primary: 20C08: Hecke algebras and their representations 05E10: Combinatorial aspects of representation theory [See also 20C30]

Citation

Pietraho, Thomas. Module structure of cells in unequal-parameter Hecke algebras. Nagoya Math. J. 198 (2010), 23--45. doi:10.1215/00277630-2009-006. https://projecteuclid.org/euclid.nmj/1273496984


Export citation

References

  • [1] D. Alvis, The left cells of the Coxeter group of type H4, J. Algebra 107 (1987), 160–168.
  • [2] C. Bonnafé, On Kazhdan-Lusztig cells in type B, preprint, arXiv:0806.0214v2 [math.RT]
  • [3] C. Bonnafé, M. Geck, L. Iancu, and T. Lam, On domino insertion and Kazhdan–Lusztig cells in type Bn, to appear in Progr. Math., preprint.
  • [4] C. Bonnafé and L. Iancu, Left cells in type Bn with unequal parameters, Represent. Theory 7 (2003), 587–609.
  • [5] F. DuCloux, Positivity results for the Hecke algebras of noncrystallographic finite Coxeter group, J. Algebra 303 (2006), 731–741.
  • [6] D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras (I), Compos. Math. 75 (1990), 135–169.
  • [7] D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras (II), Compos. Math. 81 (1992), 307–336.
  • [8] D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras (III), Compos. Math. 88 (1993), 187–234.
  • [9] M. Geck, Constructible characters, leading coefficients and left cells for finite Coxeter groups with unequal parameters, Represent. Theory 6 (2002), 1–30.
  • [10] M. Geck, Left cells and constructible representations, Represent. Theory 9 (2005), 385–416.
  • [11] M. Geck, Kazhdan-Lusztig cells and the Murphy basis, Proc. Lond. Math. Soc. 93 (2006), 635–665.
  • [12] M. Geck, Relative Kazhdan-Lusztig cells, Represent. Theory 10 (2006), 481–524.
  • [13] M. Geck, On Iwahori–Hecke algebras with unequal parameters and Lusztig’s isomorphism theorem, to appear in Pure Appl. Math. Q., preprint.
  • [14] M. Geck and L. Iancu, Lusztig’s a-function in type Bn in the asymptotic case, Nagoya Math. J. 182 (2006), 199–240.
  • [15] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, Lond. Math. Soc. Monogr. N.S. 21, Oxford University Press, New York, 2000.
  • [16] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl. 16, Addison-Wesley, Reading, MA, 1981.
  • [17] D. A. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math. 34 (1980), 185–203.
  • [18] G. Lusztig, A class of irreducible representations of a Weyl group II, Indag. Math. 44 (1982), 219–226.
  • [19] G. Lusztig, Characters of Reductive Groups over a Finite Field, Ann. of Math. Stud. 207, Princeton University Press, Princeton, 1984.
  • [20] G. Lusztig, “Left cells in Weyl groups,” in Lie Group Representations, Lecture Notes in Math. 1024, Springer, Berlin, 1983, 99–111.
  • [21] G. Lusztig, Hecke Algebras with Unequal Parameters, CRM Monogr. Ser. 18, Am. Math. Soc., Providence, 2003.
  • [22] W. M. McGovern, Left cells and domino tableaux in classical Weyl groups, Compos. Math. 101 (1996), 77–98; see also Errata, Compos. Math. 117 (1999), 117–121.
  • [23] T. Pietraho, Cells and constructible representations in type Bn, New York J. Math. 14 (2008), 411–430.
  • [24] T. Pietraho, Equivalence classes in the Weyl groups of type Bn, J. Algebraic Combin. 27 (2008), 247–262.
  • [25] T. Pietraho, A relation for domino Robinson-Schensted algorithms, Ann. Comb., 13 (2010), 519–532.
  • [26] T. A. Springer, Quelques applications de la cohomologie d’intersection, Sémin. Bourbaki 589 (1982), 249–273.
  • [27] M. A. A. van Leeuwen, The Robinson-Schensted and Schutzenberger algorithms, an elementary approach, Electron. J. Combin. 3 (1996).