Nagoya Mathematical Journal

On canonical modules of toric face rings

Bogdan Ichim and Tim Römer

Full-text: Open access

Abstract

Generalizing the concepts of Stanley-Reisner and affine monoid algebras, one can associate to a rational pointed fan $\Sigma$ in $\mathbb{R}^{d}$ the $\mathbb{Z}^{d}$-graded toric face ring $K[\Sigma]$. Assuming that $K[\Sigma]$ is Cohen-Macaulay, the main result of this paper is to characterize the situation when its canonical module is isomorphic to a $\mathbb{Z}^{d}$-graded ideal of $K[\Sigma]$. From this result several algebraic and combinatorial consequences are deduced. As an application, we give a relation between the cleanness of $K[\Sigma]$ and the shellability of $\Sigma$.

Article information

Source
Nagoya Math. J., Volume 194 (2009), 69-90.

Dates
First available in Project Euclid: 17 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1245209125

Mathematical Reviews number (MathSciNet)
MR2536527

Zentralblatt MATH identifier
1194.13012

Subjects
Primary: 13C14: Cohen-Macaulay modules [See also 13H10] 13D45: Local cohomology [See also 14B15]
Secondary: 05E99: None of the above, but in this section

Citation

Ichim, Bogdan; Römer, Tim. On canonical modules of toric face rings. Nagoya Math. J. 194 (2009), 69--90. https://projecteuclid.org/euclid.nmj/1245209125


Export citation

References

  • A. Björner and M. L. Wachs, Shellable nonpure complexes and posets. I, Trans. Am. Math. Soc., 348 (1996), no. 4, 1299--1327.
  • A. Björner and M. L. Wachs, Shellable nonpure complexes and posets. II, Trans. Am. Math. Soc., 349 (1997), no. 10, 3945--3975.
  • A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented matroids. 2nd ed., Encyclopedia of Mathematics and Its Applications 46, Cambridge University Press, 1999.
  • M. Brun, W. Bruns and T. Römer, Cohomology of partially ordered sets and local cohomology of section rings, Adv. Math., 208 (2007), no. 1, 210--235.
  • M. Brun and T. Römer, Subdivisions of toric complexes, J. Algebr. Comb., 21 (2005), no. 4, 423--448.
  • M. Brun and T. Römer, On algebras associated to partially ordered sets, to appear in Math. Scand.
  • W. Bruns and J. Gubeladze, Polyhedral algebras, arrangements of toric varieties, and their groups, Adv. Stud. Pure Math., 33 (2001), 1--51.
  • W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory, preprint (2008).
  • W. Bruns and J. Herzog, Cohen\mydashMacaulay rings, Rev. ed., Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1998.
  • G. Danaraj and V. Klee, Shellings of spheres and polytopes, Duke Math. J., 41 (1974), 443--451.
  • A. Dress, A new algebraic criterion for shellability, Beitr. Alg. Geo., 34 (1993), 45--55.
  • G. Fløystad, Cohen\mydashMacaulay cell complexes, Algebraic and geometric combinatorics (C. A. Athanasiadis et al., eds.), Contemporary Mathematics 423, American Mathematical Society, 2006, pp. 205--220.
  • H. G. Gräbe, The canonical module of a Stanley\mydashReisner ring, J. Algebra, 86 (1984), 272--281.
  • H. G. Gräbe, A dualizing complex for Stanley\mydashReisner rings, Math. Proc. Camb. Philos. Soc., 96 (1984), 203--212.
  • B. Ichim and T. Römer, On toric face rings, J. Pure Appl. Algebra, 210 (2007), no. 1, 249--266.
  • P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, London Mathematical Society Lecture Note Series 3, Cambridge University Press, 1971.
  • E. Miller, Cohen\mydashMacaulay quotients of normal semigroup rings via irreducible resolutions, Math. Research Letters, 9 (2002), 117--128.
  • J. Munkres, Topological results in combinatorics, Michigan Math. J., 31 (1984), 113--128.
  • G. A. Reisner, Cohen\mydashMacaulay quotients of polynomial rings, Adv. Math., 21 (1976), 30--49.
  • R. P. Stanley, Generalized $h$-vectors, intersection cohomology of toric varieties, and related results, Commutative algebra and combinatorics, Adv. Stud. Pure Math., 11 (1987), 187--213.
  • R. P. Stanley, Enumerative combinatorics. Vol. 1, Paperback ed., Cambridge Studies in Advanced Mathematics 49, Cambridge, Cambridge University Press, 1999.
  • R. P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics 41, Birkhäuser, 2005.
  • K. Yanagawa, Notes on $C$-graded modules over an affine semigroup ring $K[C]$, preprint math.AC/0506457.
  • G. M. Ziegler, Lectures on polytopes, Springer, 1994.