Nagoya Mathematical Journal

Descent for $l$-adic polylogarithms

Jean-Claude Douai and Zdzisław Wojtkowiak

Full-text: Open access


Let $L$ be a finite Galois extension of a number field $K$. Let $G := Gal(L/K)$. Let $z_{1}, \dots, z_{N} \in L^{*} \setminus \{1\}$ and let $m_{1}, \dots, m_{N} \in \mathbb{Q}_{l}$. Let us assume that the linear combination of $l$-adic polylogarithms $c_{n} := \sum_{i=1}^{N} m_{i}l_{n}(z_{i})_{\gamma_{i}}$ (constructed in some given way) is a cocycle on $G_{L}$ and that the formal sum $\sum_{i=1}^{N} m_{i}[z_{i}]$ is $G$-invariant. Then we show that $c_{n}$ determines a unique cocycle $s_{n}$ on $G_{K}$. We also prove a weak version of Zagier conjecture for $l$-adic dilogarithm. Finally we show that if $c_{2}$ is "motivic" ($m_{1}, \dots, m_{N} \in \mathbb{Q}$) then $s_{2}$ is also "motivic".

Article information

Nagoya Math. J., Volume 192 (2008), 59-88.

First available in Project Euclid: 22 December 2008

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11G55: Polylogarithms and relations with $K$-theory


Douai, Jean-Claude; Wojtkowiak, Zdzisław. Descent for $l$-adic polylogarithms. Nagoya Math. J. 192 (2008), 59--88.

Export citation


  • A. A. Beilinson and P. Deligne, Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs, Motives (U. Jannsen, S. L. Kleiman and J.-P. Serre, eds.), Proc. of Sym. in Pure Math. 55, Part II, AMS, 1994, pp. 97--121.
  • A. Borel, Stable Real Cohomology of Arithmetic Groups, Ann. Scient. Ecole Norm. Sup., 4 série (1974), 235--272.
  • Y. Ihara, Profinite braid groups, Galois representations and complex multiplications, Annals of Math., 123 (1986), 43--106.
  • L. Lewin, Polylogarithms and Associated Functions, North Holland, New York, Oxford, 1981.
  • Ch. Soulé, K-théorie des anneaux d`entiers de corps de nombres et cohomologie etale, Inventiones math., 55 (1979), 251--295.
  • A. A. Suslin, Algebraic K-theory of Fields, Proc. of the Int. Congress of Math., Berkeley, California, USA, 1986, pp. 222--244.
  • A. A. Suslin, $K_3$ of a field and the Bloch group, Proc. of the Steklov Inst. of Math., 1991 (4), pp. 217--239.
  • Z. Wojtkowiak, The Basic Structure of Polylogarithmic Functional Equations, Structural Properties of Polylogarithms (L. Lewin, ed.), Mathematical Surveys and Monographs, Vol. 37, pp. 205--231.
  • Z. Wojtkowiak, On $\ell$-adic iterated integrals, I, Analog of Zagier Conjecture, Nagoya Math. Journal, 176 (2004), 113--158.
  • Z. Wojtkowiak, On $\ell$-adic iterated integrals, II, Functional equations and $\ell$-adic polylogarithms, Nagoya Math. Journal, 177 (2005), 117--153.
  • Z. Wojtkowiak, On the Galois actions on torsors of paths I, Descent of Galois representations, J. Math. Sci. Univ. Tokyo, 14 (2007), 177--259.
  • Z. Wojtkowiak, On $\ell$-adic iterated integrals, IV, Galois actions on fundamental groups, Ramifications and Generators, accepted in Math. Journal of Okayama University.
  • Z. Wojtkowiak, A remark on Galois permutations of a tannakian category of mixtes Tate motives.
  • D. Zagier, Polylogarithms, Dedekind Zeta functions and the Algebraic K-theory of fields, Arithmetic Algebraic Geometry (G. van der Geer, F. Oort and J. Steenbrick, eds.), Prog. Math. Vol. 89, Birkhauser, Boston, 1991, pp. 391--430.