Nagoya Mathematical Journal

On $L$-functions of twisted 3-dimensional quaternionic Shimura varieties

Cristian Virdol

Full-text: Open access

Abstract

In this paper we compute and continue meromorphically to the entire complex plane the zeta functions of twisted quaternionic Shimura varieties of dimension 3. The twist of the quaternionic Shimura varieties is done by a mod $\wp$ representation of the absolute Galois group.

Article information

Source
Nagoya Math. J., Volume 190 (2008), 87-104.

Dates
First available in Project Euclid: 23 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1214229079

Mathematical Reviews number (MathSciNet)
MR2423830

Zentralblatt MATH identifier
1220.11077

Subjects
Primary: 11F03: Modular and automorphic functions 11F41: Automorphic forms on GL(2); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces [See also 14J20] 11F80: Galois representations 11R37: Class field theory 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27] 11R52: Quaternion and other division algebras: arithmetic, zeta functions 11R56: Adèle rings and groups 11R80: Totally real fields [See also 12J15] 11S40: Zeta functions and $L$-functions [See also 11M41, 19F27]

Citation

Virdol, Cristian. On $L$-functions of twisted 3-dimensional quaternionic Shimura varieties. Nagoya Math. J. 190 (2008), 87--104. https://projecteuclid.org/euclid.nmj/1214229079


Export citation

References

  • D. Blasius, Hilbert modular forms and the Ramanujan conjecture, preprint.
  • D. Blasius and J. D. Rogawski, Zeta functions of Shimura varieties, Motives, AMS Proc. Symp. Pure Math. 55, Part 2.
  • H. Carayol, Sur la mauvaise réduction des courbes de Shimura, Compositio Mathematica, 59 (1986), nr. 2, 151--230.
  • G. Harder, R. P. Langlands and M. Rapoport, Algebraische Zyclen auf Hilbert-Blumenthal-Flächen, J. Reine Angew. Math., 366 (1986), 53--120.
  • T. Ikeda, On the location of poles of the triple $L$-functions, Compositio Math., 83 (1992), 187--237.
  • J. D. Rogawski and J. B. Tunnell, On Artin $L$-functions associated to Hilbert modular forms of weight one, Inventiones Mathematicae, 74 (1983), 1--43.
  • J.-P. Serre, Linear representations of finite groups, Springer, 1977.
  • R. Taylor, On Galois representations associated to Hilbert modular forms, Inventiones Matematicae, 98 (1989), 265--280.
  • C. Virdol, Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties, preprint; see my web page: http://www.math.columbia.edu/~virdol/.