Nagoya Mathematical Journal

On the Kohnen-Zagier formula in the case of `$4 \times$ general odd' level

Hiroshi Sakata

Full-text: Open access

Abstract

We study the Fourier coefficients of cusp forms of half integral weight and generalize the Kohnen-Zagier formula to the case of `$4 \times$ general odd$' level by using results of Ueda. As an application, we obtain a generalization of the result of Luo-Ramakrishnan [11] to the case of arbitrary odd level.

Article information

Source
Nagoya Math. J., Volume 190 (2008), 63-85.

Dates
First available in Project Euclid: 23 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1214229078

Mathematical Reviews number (MathSciNet)
MR2423829

Zentralblatt MATH identifier
1220.11066

Subjects
Primary: 11F30: Fourier coefficients of automorphic forms 11F37: Forms of half-integer weight; nonholomorphic modular forms 11F67: Special values of automorphic $L$-series, periods of modular forms, cohomology, modular symbols

Citation

Sakata, Hiroshi. On the Kohnen-Zagier formula in the case of `$4 \times$ general odd' level. Nagoya Math. J. 190 (2008), 63--85. https://projecteuclid.org/euclid.nmj/1214229078


Export citation

References

  • E. M. Baruch and Z. Mao, Central value of automorphic $L$-functions, preprint (2003).
  • B. Gross, W. Kohnen and D. Zagier, Heegner Points and Derivatives of $L$-series, Math. Ann., 278 (1987), 497--562.
  • W. Kohnen, New forms of half-integral weight, J. reine und angew. Math., 333 (1982), 32--72.
  • W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann., 271 (1985), 237--268.
  • W. Kohnen, A Remark on the Shimura correspondence, Glasgow Math. J., 30 (1988), 285--291.
  • W. Kohnen and D. Zagier, Values of $L$-series of modular forms at the center of the critical strip, Invent. Math., 64 (1981), 175--198.
  • H. Kojima, Remark on Fourier coefficients of modular forms of half-integral weight belonging to Kohnen's spaces II, Kodai Math. J., 22 (1999), 99--115.
  • H. Kojima, On the Fourier coefficients of Maass wave forms of half integral weight over an imaginary quadratic field, J. reine und angew. Math., 526 (2000), 155--179.
  • H. Kojima, On the Fourier coefficients of Jacobi forms of index $N$ over totally real number fields, preprint (2003).
  • H. Kojima and Y. Tokuno, On the Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces and the critical values of zeta functions, Tohoku Math. J., 56 (2004), 125--145.
  • W. Luo and D. Ramakrishnan, Determination of modular forms by twists of critical $L$-values, Invent. Math., 130 (1997), 371--398.
  • H. Sakata, On the Kohnen-Zagier Formula in the case of level $4p^m$, Math. Zeit., 250 (2005), 257--266.
  • G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973), 440--481.
  • G. Shimura, On the Fourier coefficients of Hilbert modular forms of half-integral weight, Duke Math. J., 71 (1993), 501--557.
  • M. Ueda, The Decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators, J. Math. Kyoto Univ., 28 (1988), 505--558.
  • M. Ueda, New forms of half-integral weight and the twisting operators, Proc. Japan. Acad., 66 (1990), 173--175.
  • M. Ueda, On twisting operators and New forms of half-integral weight, Nagoya Math. J., 131 (1993), 135--205.
  • M. Ueda, On twisting operators and New forms of half-integral weight II: complete theory of new forms for Kohnen space, Nagoya Math. J., 149 (1998), 117--171.
  • M. Ueda, On twisting operators and New forms of half-integral weight III: subspace corresponding to very new forms, Comm. Math. Univ. Sancti Pauli, 50 (2001), 1--27.
  • J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demientier, J. Math. Pure Appl., 60 (1981), 375--484.