Nagoya Mathematical Journal

Gauß-Manin connection via Witt-differentials

Andreas Langer and Thomas Zink

Full-text: Open access


Let $X/R$ be a smooth scheme over a ring $R$. Consider the category of locally free crystals of finite rank on the situs $\mathop{\mathit{Crys}}(X/W_{t}(R))$. We show that it is equivalent to the category of locally free $W_{t}(\mathcal{O}_{X})$-modules of finite rank endowed with a nilpotent, integrable de Rham-Witt connection. In the case where $R$ is a perfect field this was shown by Etesse [E] and Bloch [Bl]We use the result for a construction of the Gauß-Manin connection as a de Rham-Witt connection.

Article information

Nagoya Math. J., Volume 179 (2005), 1-16.

First available in Project Euclid: 5 October 2005

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14F30: $p$-adic cohomology, crystalline cohomology 14F40: de Rham cohomology [See also 14C30, 32C35, 32L10]


Langer, Andreas; Zink, Thomas. Gauß-Manin connection via Witt-differentials. Nagoya Math. J. 179 (2005), 1--16.

Export citation


  • P. Berthelot, Cohomologie cristalline des schémas de charactéristique $p > 0$, Springer LNM 407 (1974).
  • P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton (1978).
  • S. Bloch, Crystals and de Rham-Witt connections , J. Inst. Math. Jussieu, 3 (2004, no. 3), 315–326.
  • J.-Y. Etesse, Complexe de De Rham-Witt à coefficients dans un crystal , Comp. Math., 66 , 57–120 (1988).
  • R. Hartshorne, Residues and Duality, Springer LNM 20 (1966).
  • N. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turritin , IHES Publ. Math. No.3 (1970).
  • N. Katz and T. Oda, On the differentiation of de Rham cohomology classes with respect to parameters , J. Math. Kyoto Univ., 8-2 (1968), 199–213.
  • A. Langer and Th. Zink, De Rham-Witt cohomology for a proper and smooth morphism , preprint (2001).