Nagoya Mathematical Journal

On algebraic groups and discontinuous groups

Takashi Ono

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 27, Part 1 (1966), 279-322.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118801634

Mathematical Reviews number (MathSciNet)
MR0199193

Zentralblatt MATH identifier
0166.29802

Subjects
Primary: 14.50
Secondary: 10.25

Citation

Ono, Takashi. On algebraic groups and discontinuous groups. Nagoya Math. J. 27 (1966), no. 1, 279--322. https://projecteuclid.org/euclid.nmj/1118801634


Export citation

References

  • [1] C. B. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 10 -129.
  • [2] P. Alexadroff and H. Hopf, Topologie I, Berlin, 1935.
  • [3] A. Borel, Sur la cohomologie des espaces fibre's principaux et des espaces homogenes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
  • [4] A. Borel, Some finiteness properties of adele groups over number fields, I.H.E.S. No. 16, 1963, 101-126.
  • [5] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 459-538, II, ibid. 81 (1959), 315-382.
  • [6] Harish-Chandra, Differential operators on a semi-simple Lie algebra. Amer. J. Math. 79 (1957), 87-120.
  • [7] S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Rie- mannian manifolds, Ann. of Math. 45 (1944), 747-752.
  • [8] C. Chevalley, Thorie des groupes de Lie II, Paris, 1951.
  • [9] C. Chevalley, Sur certains groupes simples, Thoku Math. J. 7 (1955), 14-66.
  • [10] Seminaire C. Chevalley, Classification des groupes de Lie algbriques, E.N.S., 1958.
  • [11] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
  • [12] H. Klingen, Uber die Werte der Dedekindschen Zetafunktion, Math. Annalen 145 (1962), 265-272.
  • [13] S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555-563.
  • [14] Sminaire S. Lie, E.N.S., 1955.
  • [15] H. W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math,Sem. Hamburg, 22 (1958), 131-140.
  • [16] T. Ono, Sur les groupes de Chevalley, J. Math. Soc. Japan 10 (1958), 307-313.
  • [17] T. Ono, On the field of definition of Borel subgroups of semi-simple algebraic groups, J. Math. Soc. Japan 15 (1963), 392-395.
  • [38] T. Ono, On the relative theory of Tamagawa numbers, Ann. of Math. 82 (1965),88-111.
  • [19] R. Ree, On some simple groups defined by C. Chevalley, Trans. Amer. Math. Soc. 84 (1957), 392-400.
  • [20] H. Samelson, Topology of Lie groups, Bull. Amer. Math. Soc. 58 (1952), 2-37.
  • [21] I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464-492.
  • [22] C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86.
  • [23] C. L. Siegel, Uber die analytische Theorie der quadratischen Formen III. Ann. of Math. 38 (1937), 212-291.
  • [24] R. Steinberg, Variations on a theme of Chevalley, Pacific J. of Math. 9 (1959), 875- 891.
  • [25] A. Weil, Adeles and algebraic groups, The Institute for Advanced Study, Princeton N.J., 1961. University of Pennsylvania