Nagoya Mathematical Journal

A characterization of ${\rm QF}$-$3$ rings

J. P. Jans, H. Y. Mochizuki, and L. E. T. Wu

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 27, Part 1 (1966), 7-13.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118801608

Mathematical Reviews number (MathSciNet)
MR0194470

Zentralblatt MATH identifier
0158.28804

Subjects
Primary: 16.40

Citation

Wu, L. E. T.; Mochizuki, H. Y.; Jans, J. P. A characterization of ${\rm QF}$-$3$ rings. Nagoya Math. J. 27 (1966), no. 1, 7--13. https://projecteuclid.org/euclid.nmj/1118801608


Export citation

References

  • [1] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Am. Math. Soc, 95 (I960), pp. 446-488.
  • [2] S. U. Chase, Direct products of modules, Trans. Am. Math. Soc, 97 (1960), pp. 457- 473.
  • [3] S. E. Dickson, A torsion theory for Abelian categories, (to appear).
  • [4] B. Eckmann and A. Schopf, Uber injective Moduln, Archiv der Math., 4 (1953), pp. 75-78.
  • [5] J. P. Jans, Projective injective modules, Pacific Journal of Math., 9 (1959), pp. 1103- 1108.
  • [6] J. P. Jans, Rings and homology, Holt, Rinehart and Winston, New York, (1964).
  • [7] H. Y. Mochizuki, Finistic Global Dimension for Rings, Pacific J. Math. 15 (1965), pp. 249-258.
  • [8] H. Y. Mochizuki, On the double commutator algebra of QF-3 algebras (to appear).
  • [9] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, 6 (1958), No. 150, pp 83-142.
  • [10] T. Nakayama, On Frobeniusean Algebras I, Annals of Math., 40 (1939), pp. 611-633.
  • [11] T. Nakayama, On Frobeniusean Algebras II, Annals of Math., 42 (1941), pp. 1-21.
  • [12] H. Tachikawa, A characterization of QF-3 algebras, Proc. Am. Math. Soc, 13 (1962), pp. 101-103.
  • [13] H. Tachikawa, On the dominant dimensions of QF-3 algebras, Trans. Am. Math. Soc. 112 (1964), pp. 249-266.
  • [14] R. M. Thrall, Some generalizations of Quasi-Frobenius algebras, Trans, Am, Math, Soc, 64 (1948), pp. 173-183,
  • [15] D. W. Wall, Algebras with unique minimal faithful representations, Duke Math. J., 25 (1958), pp. 321-329.
  • [16] L. E. T. Wu, A characterization of self injective rings, (to appear in the Illinois J. of Math.). Western Washington StateCollege University of California University of Washington