Nagoya Mathematical Journal

Unique continuation for parabolic equations of higher order

Lu-san Chen and Tadashi Kuroda

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 26 (1966), 115-120.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118801533

Mathematical Reviews number (MathSciNet)
MR0203271

Zentralblatt MATH identifier
0143.33302

Subjects
Primary: 35.63

Citation

Chen, Lu-san; Kuroda, Tadashi. Unique continuation for parabolic equations of higher order. Nagoya Math. J. 26 (1966), 115--120. https://projecteuclid.org/euclid.nmj/1118801533


Export citation

References

  • [J] D. E. Edmunds Two uniqueness theorems associated with parabolic differential operators, Journ. London Math. Soc, 39 (1964),345-354.
  • [2] A. Girding Dirichlet's problem for linear elliptic partial differential equation, Math, Scand, 1 (1953), 55-72,
  • [3] S. Ito and H. Yamabe A unique continuation theorem for solutions of a parabolic equation, Journ. Math. Soc. Jap., 10 (1958), 314-321.
  • [4] M. Lees Asymptotic behaviour of solutions of parabolic differentialinequalities, Canad. Journ. Math., 14 (1962), 626-631.
  • [5] M. Lees and M. H. Protter Unique continuation for parabolic differential equations and inequalities, Duke Math. Journ., 28 (1961), 369-382.
  • [6] J. L. Lions and B. Malgrange Sur unicte retrograde dans les problemes mixtes paraboliques, Math. Scand., 8 (1960), 277-286.
  • [7] S. Mizohata Unicit du prolongement des solutions pour quelques operateurs dif- ferentiels paraboliques, Mem. ColJ. Sci., Univ. Kyoto, A 31 (1958), 219-239.
  • [8] L. Nirenberg Remarks on strongly elliptic partial differentialequations, Comm. Pure Appl. Math., 8 (1955), 648-674.
  • [9] M. H. Protter Properties of solutions of parabolic equations and inequalities, Canad. Journ. Math., 13 (1961), 331-345.
  • [10] H. Yamabe A unique continuation theorem of a diffusion equation, Ann. of Math., 69 (1959), 462-466.
  • [11] K. Yosida An abstract analyticity in time for solutions of a diffusion equation, Proc. Jap. Acad., 35 (1959), 109-113. Department of Mathematics, Taiwan provincial Cheng-Kung University, Tainan and MathematicalInstitute, Nagoya University, Nagoya