Nagoya Mathematical Journal

On a ring isomorphism induced by quasiconformal mappings

Mitsuru Nakai

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 14 (1959), 201-221.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118800149

Mathematical Reviews number (MathSciNet)
MR0102589

Zentralblatt MATH identifier
0096.06002

Subjects
Primary: 30.00
Secondary: 46.00

Citation

Nakai, Mitsuru. On a ring isomorphism induced by quasiconformal mappings. Nagoya Math. J. 14 (1959), 201--221. https://projecteuclid.org/euclid.nmj/1118800149


Export citation

References

  • [1] L. Ahlfors, On quasi-conformal mapping, Journal c Analyse Mathematique,vol. 3 (1953/4), 1-58, 207-208.
  • [2] L. Bers, On a theorem of Mori and the definition of quasi-conformality, Trans. Amer. Math. Soc, vol. 84 (1957), 78-84.
  • [3] N. Bourbaki, Integration, chap. Ill, 4.
  • [4] L. Loomis, An introduction to abstract harmonic analysis, 1953.
  • [5] A. Mori, On quasi-conformality and pseudo-analiticity, Trans. Amer. Math. Soc, vol. 68(1957), 56-77.
  • [6] S. Mori, A remark on a subdomain of a Riemann surface of the class OHD, Proc. Japan Acad., vol. 32 (1958), 251-254.
  • [7] S. Mori and M. Ota, A remark on the ideal boundary of a Riemann surface, Proc. Japan Acad., 32, No. 6 (1956). 409-411.
  • [8] A. Pfluger, Sur un propriete de application quasi conforme d'une surface de Riemann ouverte, C. R. Acad. Sci. Paris, vol. 227 (1948), 25-26.
  • [9] H. L. Royden, Harmonic functions on open Riemann surface, Trans. Amer. Math. Soc, vol. 73 (1952), 40-94.
  • [10] H. L. Royden, The ideal boundary of an open Riemann surface, Annals of Mathematics Studies, No.30 (1953), 107-109.
  • [11] H. L. Royen, A property of quasi-conformal mapping, Proc. Amer. Math. Soc, vol. 5(1954), 266-269.
  • [12] Z. Yjb, On absolutely continuous functions of two or more variables in the Tonelli sense and quasi-conformal mappings in the A. Mori sense, Comment. Math. Univ. St. Pauli, Tome IV (1955), 67-92. Mathematical Institute Nagoya University