Nagoya Mathematical Journal

$p$-ample bundles and their Chern classes

David Gieseker

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 43 (1971), 91-116.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118798367

Mathematical Reviews number (MathSciNet)
MR0296078

Zentralblatt MATH identifier
0221.14010

Subjects
Primary: 14L05: Formal groups, $p$-divisible groups [See also 55N22]

Citation

Gieseker, David. $p$-ample bundles and their Chern classes. Nagoya Math. J. 43 (1971), 91--116. https://projecteuclid.org/euclid.nmj/1118798367


Export citation

References

  • [1] M.F. Atiyah, Vector Bundles Over an Elliptic Curve, Proc. Lond. Math. Soc, 3, VII (1957), 414-452.
  • [2] C. Barton, Tensor Products of Ample Bundles in Characteristic p (to appear).
  • [3] C. Barton, Contributions to the Theory of Ample Vector Bundles, Thesis, Columbia Univer- sity, 1968.
  • [4] S. Bloch and D. Gieseker, The Positivity of the Chern Classes of an Ample Vector Bundle, Invent, math. 12 (1971), 112-117.
  • [5] P.A. Griffiths, The Extension Problem in Complex Analysis II. Embeddings with Positive Normal Bundle, Amer. J. Math. 88 (2) (1965), 366-446.
  • [6] P.A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, in Global Analysis, edited by D.C. Spencer and S. Iyanaga, Princeton Mathematical Series, No. 29, Tokyo, 1969.
  • [7] A. Grothendieck, La Theorie des Classes de Chern, Bull. Soc. Math. France 86 (1958), 137-154.
  • [8] and J. Dieudonne, Elements de Geometrie Algbrique, Publ. Math. IHES 1960 ff.
  • [9] R. Hartshorne, Ample Vector Bundles, Publ. Math. IHES 29 (1966), 63-94.
  • [10] R. Hartshorne, Cohomological Dimension of Algebraic Varieties, Ann. of Math. 88 (3), 1968, 403-450.
  • [11] R. Hartshorne, Ample Vector Bundles on Curves, Nagoya Math. J. Vol. 43 (this volume).
  • [12] S.L. Kleiman, Towards a Numerical Theory of Ampleness, Ann. of Math. 84 (2) (1966), 291-344.
  • [13] S.L. Kleiman, Ample Vector Bundles on Surfaces, Proc. Amer. Math. Soc. 21, No. 3, June 1969, 673-676. University of California Santa Cruz,California.