Nagoya Mathematical Journal
- Nagoya Math. J.
- Volume 32 (1968), 109-139.
Homotopy groups of compact Lie groups $E_{6},\,E_{7}$ and $E_{8}$
Full-text: Open access
Article information
Source
Nagoya Math. J., Volume 32 (1968), 109-139.
Dates
First available in Project Euclid: 14 June 2005
Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118797372
Mathematical Reviews number (MathSciNet)
MR0233924
Zentralblatt MATH identifier
0159.24802
Subjects
Primary: 22.50
Secondary: 55.00
Citation
Kachi, Hideyuki. Homotopy groups of compact Lie groups $E_{6},\,E_{7}$ and $E_{8}$. Nagoya Math. J. 32 (1968), 109--139. https://projecteuclid.org/euclid.nmj/1118797372
References
- [1] J. F. Adams On the group /(X) IV, Topology, 5-1 (1966), 21-71.Mathematical Reviews (MathSciNet): MR198470
Digital Object Identifier: doi:10.1016/0040-9383(66)90004-8 - [2] S. Araki Cohomology modulo 2 of the compact exceptional groups E6 and E7i J. of Math. Osaka C.V., Vol. 12 (1961), 43-65.Mathematical Reviews (MathSciNet): MR0147578
- [3] S. Araki and Y. Shikata Cohomology mod 2 of the compact exceptional group E8 Proc. Japan Acad., 37 (1961), 619-622.Mathematical Reviews (MathSciNet): MR0143227
Zentralblatt MATH: 0149.20201
Digital Object Identifier: doi:10.3792/pja/1195523538
Project Euclid: euclid.pja/1195523538 - [4] A.L. Blakers and W.S. Massey The homotopy groups of a triad II, Ann. of Math., 55 (1952), 192-201.Mathematical Reviews (MathSciNet): MR0044836
Zentralblatt MATH: 0046.40604
Digital Object Identifier: doi:10.2307/1969428 - [5] R. Bott The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.Mathematical Reviews (MathSciNet): MR0110104
Zentralblatt MATH: 0129.15601
Digital Object Identifier: doi:10.2307/1970106 - [6] R. Bott and H. Samelson Application of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), 964-1029.Mathematical Reviews (MathSciNet): MR0105694
Zentralblatt MATH: 0101.39702
Digital Object Identifier: doi:10.2307/2372843 - [7] H. Cartan and J.P. Serre Espaces fibres et groupes d'homotopie I, II, C.R. Acad. Sci. Paris., 234 (1952), 288-290, 393-395.Zentralblatt MATH: 0048.41303
- [8] J.P. Serre Groupes d'homotopie et classes de groupes abelian, Ann. of Math., 58 (1953), 258-294.Mathematical Reviews (MathSciNet): MR0059548
Zentralblatt MATH: 0052.19303
Digital Object Identifier: doi:10.2307/1969789 - [9] J.P. Serre Cohomologie modulo 2 des complexes dilenberg Mac-Lane, Comm.Math. Helv., 27 (1953), 198-231.Mathematical Reviews (MathSciNet): MR0060234
Zentralblatt MATH: 0052.19501
Digital Object Identifier: doi:10.1007/BF02564562 - [10] M. Mimura The homotopy group of Lie groups of low rank, J. Math. Kyoto Univ., 6-2 (1967), 131-176.Mathematical Reviews (MathSciNet): MR0206958
Zentralblatt MATH: 0171.44101
Project Euclid: euclid.kjm/1250524375 - [11] H. Toda Composition methods in homotopy groups of spheres, Ann. of Math.Studies., (1962). Mathematical Institute Nagoya University

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The 5-primary homotopy exponent of the exceptional Lie group $E_8$
Theriault, Stephen D., Journal of Mathematics of Kyoto University, 2004 - An upper bound for the 3-primary homotopy exponent of the exceptional Lie group $E_7$
Theriault, Stephen D., Journal of Mathematics of Kyoto University, 2007 - Cohomology operations in the space of loops on the exceptional Lie group $E_6$
Nakagawa, Masaki, Journal of Mathematics of Kyoto University, 2004
- The 5-primary homotopy exponent of the exceptional Lie group $E_8$
Theriault, Stephen D., Journal of Mathematics of Kyoto University, 2004 - An upper bound for the 3-primary homotopy exponent of the exceptional Lie group $E_7$
Theriault, Stephen D., Journal of Mathematics of Kyoto University, 2007 - Cohomology operations in the space of loops on the exceptional Lie group $E_6$
Nakagawa, Masaki, Journal of Mathematics of Kyoto University, 2004 - On the mod 2 cohomology of the classifying space of the exceptional Lie group $E_{6}$
Kameko, Masaki, Nakagawa, Masaki, and Nishimoto, Tetsu, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2019 - Some groups of type $E_{7}$
Springer, T. A., Nagoya Mathematical Journal, 2006 - Representation types and 2-primary homotopy groups of
certain compact Lie groups
Davis, Donald M., Homology, Homotopy and Applications, 2003 - Classifying spaces for $1$–truncated compact Lie groups
Rezk, Charles, Algebraic & Geometric Topology, 2018 - Magic coset decompositions
Cacciatori, Sergio L., Cerchiai, Bianca L., and Marrani, Alessio, Advances in Theoretical and Mathematical Physics, 2013 - Mod $p$ decompositions of non-simply connected Lie groups
Kishimoto, Daisuke and Kono, Akira, Journal of Mathematics of Kyoto University, 2008 - Realizations of inner automorphisms of order 4 and fixed points subgroups by them on the connected compact exceptional lie group $E_8$, Part I
Miyashita, Toshikazu, Tsukuba Journal of Mathematics, 2017
