Nagoya Mathematical Journal

Homotopy groups of compact Lie groups $E_{6},\,E_{7}$ and $E_{8}$

Hideyuki Kachi

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 32 (1968), 109-139.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118797372

Mathematical Reviews number (MathSciNet)
MR0233924

Zentralblatt MATH identifier
0159.24802

Subjects
Primary: 22.50
Secondary: 55.00

Citation

Kachi, Hideyuki. Homotopy groups of compact Lie groups $E_{6},\,E_{7}$ and $E_{8}$. Nagoya Math. J. 32 (1968), 109--139. https://projecteuclid.org/euclid.nmj/1118797372


Export citation

References

  • [1] J. F. Adams On the group /(X) IV, Topology, 5-1 (1966), 21-71.
  • [2] S. Araki Cohomology modulo 2 of the compact exceptional groups E6 and E7i J. of Math. Osaka C.V., Vol. 12 (1961), 43-65.
  • [3] S. Araki and Y. Shikata Cohomology mod 2 of the compact exceptional group E8 Proc. Japan Acad., 37 (1961), 619-622.
  • [4] A.L. Blakers and W.S. Massey The homotopy groups of a triad II, Ann. of Math., 55 (1952), 192-201.
  • [5] R. Bott The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.
  • [6] R. Bott and H. Samelson Application of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), 964-1029.
  • [7] H. Cartan and J.P. Serre Espaces fibres et groupes d'homotopie I, II, C.R. Acad. Sci. Paris., 234 (1952), 288-290, 393-395.
  • [8] J.P. Serre Groupes d'homotopie et classes de groupes abelian, Ann. of Math., 58 (1953), 258-294.
  • [9] J.P. Serre Cohomologie modulo 2 des complexes dilenberg Mac-Lane, Comm.Math. Helv., 27 (1953), 198-231.
  • [10] M. Mimura The homotopy group of Lie groups of low rank, J. Math. Kyoto Univ., 6-2 (1967), 131-176.
  • [11] H. Toda Composition methods in homotopy groups of spheres, Ann. of Math.Studies., (1962). Mathematical Institute Nagoya University