Nagoya Mathematical Journal

A classification of irreducible prehomogeneous vector spaces and their relative invariants

T. Kimura and M. Sato

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 65 (1977), 1-155.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118796150

Mathematical Reviews number (MathSciNet)
MR0430336

Zentralblatt MATH identifier
0321.14030

Subjects
Primary: 32M10: Homogeneous complex manifolds [See also 14M17, 57T15]
Secondary: 20G05: Representation theory

Citation

Sato, M.; Kimura, T. A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65 (1977), 1--155. https://projecteuclid.org/euclid.nmj/1118796150


Export citation

References

  • [1] H. Weyl, Classical Groups, Princeton University Press, 1964.
  • [2] J. Igusa, A classification of spinors up to dimension twelve, Amer. J. of Math., 92 (1970).
  • [3] C. Chevalley, The Algebraic Theory of Spinors, Columbia University Press, 1954.
  • [4] C. Chevalley and R. D. Schaf er, The exceptional simple Lie algebras Fand E, Proc. Nat. Acad. Sci. U.S.A., 36 (1950).
  • [5] N. Jacobson, Exceptional Lie Algebras, lecture note, Dekker, 1971.
  • [] R. C. King, The dimensions of irreducible tensor representations of the orthogonal and symplectic groups, Can. J, Math., XXIII, 1 (1971), 176-188.
  • [7] Stephen J. Harris, Some irreducible representation of exceptional algebraic groups, Amer. J. of Math., 93 (1971).
  • [8] Y. Matsushima, Espace homogenes de Stein des groupes de Lie complexes, Nagoya Math. J., 16 (1960), 205-218.
  • [9] Y. Matsushima, Theory of Lie algebras (in Japanese), Kyoritsu Gendai Sugaku Koza, 15 (1956).
  • [10] N. Iwahori, Theory of Lie groups (in Japanese), Iwanami Koza Gendai Oyo Sugaku.
  • [11] M. Sato, Theory of prehomogeneous vector spaces (note by T. Shintani in Japanese), Sugaku no ayumi, 15 (1970), 85-157.
  • [12] T. Kimura, Study of irreducible prehomogeneous vector spaces, Master Thesis in Japanese, University of Tokyo, 1973, 373 pp.
  • [13] H. Kawahara, Prehomogeneous vector spaces related with the spin group, Master Thesis in Japanese, University of Tokyo, 1974.
  • [14] T. Suzuki, Fourier transforms of relative invariants of prehomogeneous vector spaces, Master Thesis in Japanese, Nagoya University, 1975.
  • [15] H. Sato, Functional equations of zeta-functions in several variables associated with some prehomogeneous vector spaces of positive definite hermitian matrices, Master Thesis in Japanese, University of Tokyo, 1975.
  • [16] M. Muro, Micro-local calculus and Fourier transforms (in prehomogeneous vector spaces), Master Thesis in Japanese, Kyoto University, 1976.
  • [17] T. Shintani, On Dirichlet series whose coefficients are class numbers of integral binary cubic forms, J. Math. Soc. Japan, 24 (1972).
  • [18] M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math., 100, 1 (1974), 131-170.
  • [19] T. Shintani, On zeta functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo, 22 (1975), 25-65.
  • [20] I. Ozeki, Micro-local structure of some prehomogeneous vector spaces, in prepa- ration.
  • [21] D. Luna, Sur les orbites fermees des groupes algebriques reductifs, Inventiones Math., 16 (1972), 1-5. The Research Institute for Mathematical Science Kyoto University Nagoya University and The Institute for Advanced Study Princeton