Nagoya Mathematical Journal

Symmetry and separation of variables for the Helmholtz and Laplace equations

C. P. Boyer, E. G. Kalnins, and W. Miller

Full-text: Open access

Article information

Source
Nagoya Math. J. Volume 60 (1976), 35-80.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118795636

Mathematical Reviews number (MathSciNet)
MR0393791

Zentralblatt MATH identifier
0314.33011

Subjects
Primary: 35J05: Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation [See also 31Axx, 31Bxx]
Secondary: 33A75 35A30: Geometric theory, characteristics, transformations [See also 58J70, 58J72]

Citation

Boyer, C. P.; Kalnins, E. G.; Miller, W. Symmetry and separation of variables for the Helmholtz and Laplace equations. Nagoya Math. J. 60 (1976), 35--80. https://projecteuclid.org/euclid.nmj/1118795636.


Export citation

References

  • [1] C.Boyer, E. G.Kalnins, andW. Miller, Jr.,Lietheory andseparation of varia- bles. 6. Theequation iUtAiU0, J.Math. Phys., 16(1975), 499-511.
  • [2] W.Miller, Jr., Symmetry, separation ofvariables andspecial functions, in Pro- ceedings of the Advanced Seminar on Special Functions, Madison, Wisconsin, 1975, Academic Press, NewYork,1975.
  • [3] P. Morse andH.Feshbach, Methods ofTheoretical Physics, Part I,McGraw-Hill, New York,1953.
  • [4] A. A. Makarov, J. a. Smorodinsky, K. Valiev, and P. Winternitz, A systematic search for nonrelativistic systems with dynamical symmetries. Part I The inte- grals of motion, Nuovo Cimento, 52A (1967), pp. 1061-1084.
  • [5] M. Bcher, Die Reihenentwickelungen der Potentialtheorie, Leipzig, 1894.
  • [6] H. Bateman, Partial Differential Equations of Mathematical Physics, Cambridge University Press (First Edition, 1932), Reprinted 1969.
  • [7] H. Bateman, Electrical and Optical Wave-Motion, Dover 1955 (Reprint of 1914 Edition).
  • [8] N. Y. Vilenkin, Special Functions and the Theory of Group Representations, AMS Trans., Providence, Rhode Island, 1968 (English Transl.).
  • [9] W. Miller, Jr., Symmetry Groups and Their Applications, Academic Press, New York, 1972.
  • [10] F. Arscott, Periodic Differential Equations, Pergamon, Oxford, England, 1964.
  • [11] A. Erdelyi et al., Higher Transcendental Functions. Vols. 1 and 2, McGraw-Hill, New York, 1953.
  • [12] K. Urwin and F. Arscott, Theory of the Whittaker-Hill Equation, Proc. Roy. Soc. Edinb., A69 (1970), 28-44.
  • [13] W. Miller, Jr., Lie Theory and Separation of Variables II Parabolic Coordinates, SIAM J. Math. Anal., 5 (1974), 822-836.
  • [14] W. Miller, Jr., Lie Theory and Special Functions, Academic Press, New York, 1968.
  • [15] J. Patera and P. Winternitz, A new basis for the representations of the rotation group. Lame and Heun polynomials, J. Math. Phys., 14 (1973), 1130-1139.
  • [16] E. G. Kalnins and W. Miller, Jr., Lie theory and separation of variables. 4. The groups SO(2,1) and SO(3), J. Math. Phys., 15 (1974), 1263-1274.
  • [17] W. Miller, Jr., Symmetry and Separation of Variables for Linear Differential Equations, Addison-Wesley, Reading, Mass, (to appear).
  • [18] W. Miller, Jr., Lie Theory and Separation of Variables. 1. Parabolic Cylinder Coordinates, SIAM J. Math. Anal., 5 (1974), 626-643.
  • [19] H. Bucholz, The Confluent Hypergeometric Function, Springer-Verlag, New York, 1969.
  • [20] L. Weisner, Group-theoretic origin of certain generating functions, Pacific J. Math., 5 (1955), 1033-1039.
  • [21] E. G. Kalnins and W. Miller, Jr., Lie theory and separation of variables. 9. Ortho- gonal inseparable coordinate systems for the wave equation –J20, J. Math. Phys. (to appear).
  • [22] E. G..Kalnins and W. Miller, Jr., Lie theory and separation of variables. 10. Non- orthogonal UN-separable solutions of the wave equation dtt2, J. Math. Phys. (to appear).
  • [23] F. W. Schafke, Einfuhrung in die Theorie der Speziellen Funktion der Mathe- matischen Physik, Springer-Verlag, Berlin, 1963.
  • [24] W. Miller, Jr., Special Functions and the Complex Euclidean Group in 3-Space. I, J. Math. Phys., 9 (1968), 1163-1175.
  • [25] P. Winternitz, I. Lukac, and Y. Smorodinskii, Quantum numbers in the little groups of the Poincare group, Soviet Physics JNP, 7 (1968), 139-145.
  • [26] E. G. Kalnins and W. Miller, Jr., Lie theory and separation of variables. 8. Semi- subgroup coordinates for u-A0J. Math. Phys. (to appear).
  • [27] E. G. Kalnins and W. Miller, Jr., Lie theory and separation of variables. 11. The Euler-Poisson-Darboux equation, J. Math. Phys (to appear).
  • [28] W. Miller, Jr., Special Functions and the Complex Euclidean Group in 3-Space. Ill, J. Math. Phys., 9 (1968), 1434-1444.
  • [29] B. Viswanathan, Generating functions for ultraspherical functions, Can J. Math., 20 (1968), 120-134. Universidad Nacional Autonoma de Mexico University of Waikato University of Minnesota