Nagoya Mathematical Journal

Negative vector bundles and complex Finsler structures

Shoshichi Kobayashi

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 57 (1975), 153-166.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118795367

Mathematical Reviews number (MathSciNet)
MR0377126

Zentralblatt MATH identifier
0326.32016

Subjects
Primary: 32L10: Sheaves and cohomology of sections of holomorphic vector bundles, general results [See also 14F05, 18F20, 55N30]

Citation

Kobayashi, Shoshichi. Negative vector bundles and complex Finsler structures. Nagoya Math. J. 57 (1975), 153--166. https://projecteuclid.org/euclid.nmj/1118795367


Export citation

References

  • [1] S.I.Goldberg and S.Kobayashi, On holomorphicbisectional curvature, J. Differen- tial Geometry 1 (1967), 225-233.
  • [2] H. Grauert, ber Modifikationen und exzeptionelle analytische Mengen, Math. Annalen 146(1962), 331-368.
  • [3] P.A. Griffiths, Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis in honor of Kodaira, 1969, 185-252.
  • [4] R. Hartshorne, Ample vector bundles, Publ. I.H. E. S. 29 (1966), 319-350.
  • [5] S. Kobayashi, Hyperbolic Manifolds andHolomorphic Mappings, Marcel Dekker, Inc. New York, 1970.
  • [6] S. Kobayashi andT. Ochiai, Oncomplex manifolds with positive tangent bundles, J. Math. Soc. Japan 22 (1970), 499-525.
  • [7] S. Kobayashi andH.Wu, Onholomorphic sections of certain hermitian vector bundles, Math. Annalen 189(1970), 1-4.
  • [8] G.B. Rizza, F-forme quadratiche ed hermitiane, Rend. Mat. e Appl. 23 (1965), 221-249.
  • [9] H. Rund, Generalized metrics on complex manifolds, Math. Nachrichten34 (1967), 55-77.
  • [10] H.Rund, TheDifferential Geometry of Finsler Spaces, Springer-Verlag, 1959.
  • [11] H.H.Schaeffer, Linear Topological Spaces, Macmillan, 1966. University of California, Berkeley