Nagoya Mathematical Journal

A theorem of Matsushima

Hiroshi Umemura

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 54 (1974), 123-134.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118795102

Mathematical Reviews number (MathSciNet)
MR0364269

Zentralblatt MATH identifier
0265.14006

Subjects
Primary: 14L15: Group schemes
Secondary: 14F05: Sheaves, derived categories of sheaves and related constructions [See also 14H60, 14J60, 18F20, 32Lxx, 46M20]

Citation

Umemura, Hiroshi. A theorem of Matsushima. Nagoya Math. J. 54 (1974), 123--134. https://projecteuclid.org/euclid.nmj/1118795102


Export citation

References

  • [1] Atiyah, M. F., On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France, 84 (1956), 307-317.
  • [2] Atiyah, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3), 7 (1957), 414-452.
  • [3] Demazure, M. et Grothendieck, A., Schemas en Groupes (S. G. A. D.), I, II,III, Vol. 151, 152, 153, Lecture Notes in Math., Springer.
  • [4] Grothendieck,A., Technique de construction et theoremes d'existence en geometrie algebrique I. Generalites. Descente par morphismes fidelement plats, Seminaire Bourbaki, 1.12 (1959/60), n 90.
  • [5] Grothendieck, Technique de construction et theoremes d'existence en geometrie algebrique IV. Les schemas de Hubert, Seminaire Bourbaki, 1.13 (1960/61), n221.
  • [6] Grothendieck, Crystals and the De Rham cohomology of schemes, Dix exposes sur la coho- mologie des schemas, 1968 North-Holland Pub. company.
  • [7] Matsushima, Y., Fibres holomorphes sur un tore complexe, Nagoya Math. J., vol. 14 (1959), 1-24.
  • [8] Miyanishi, M., Some remarks on algebraic homogeneous vector bundles, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo (1973), 71-93.
  • [9] Morimoto, A., Sur le groupe d'automorphismes d'un espace fibre principal analy- tique complexe, Nogaya Math. J., vol. 13 (1958), 157-168.
  • [10] Umemura, H., Some results in the theory of vector bundles, Nagoya Math. J., vol. 52 (1973), 97-128. Nagoya University