Nagoya Mathematical Journal

The extended plus-one hypothesis---a relative consistency result

Theodore A. Slaman

Full-text: Open access

Article information

Source
Nagoya Math. J. Volume 92 (1983), 107-120.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118787359

Mathematical Reviews number (MathSciNet)
MR0726143

Zentralblatt MATH identifier
0549.03033

Subjects
Primary: 03D65: Higher-type and set recursion theory
Secondary: 03E35: Consistency and independence results

Citation

Slaman, Theodore A. The extended plus-one hypothesis---a relative consistency result. Nagoya Math. J. 92 (1983), 107--120. https://projecteuclid.org/euclid.nmj/1118787359.


Export citation

References

  • [1] R. O. Gandy, Generalized recursive functionals of finite type, paper given at the symposium on mathematical logic held at University of Clermont Ferrand (1962).
  • [2] E. R. Grifor and D. Normann, Effective cofinalities and admissibility in E-e- cursion, University of Oslo, preprint (1982).
  • [3] T. J. Grilliot, Selection functions for recursive functionals, Notre Dame. J. Formal Logic, 10 (1969), 225-234.
  • [4] L. A. Harrington and D. B. MacQueen, Selection in abstract recursion theory, J. Symbolic Logic, 41 (1976), 153-158.
  • [5] L. A. Harrington, Contributions to recursion theory on higher types, Ph.D. Thesis, M.I.T., Cambridge, MA, (1973).
  • [6] Long protective well orderings, Ann. of Math. Logic, 12 (1977), 1-24.
  • [7] T. Jech, Set Theory, Academic Press, New York, 1978.
  • [8] S. C. Kleene, Recursive functionals and quantifiers of finite types I and II, Trans. Amer. Math. Soc, 91 and 108 (1959 and 1963), 1-52 and 106-142.
  • [9] Y. N. Moschovakis, Hyperanalytic predicates, Trans. Amer. Math. Soc, 138 (1967), 249-282.
  • [10] D. Normann, Set recursion in Generalized Recursion Theory II, North Holland, Amsterdam, 1978.
  • [11] G. E. Sacks, The /-section of a type n object, Amer. J. Math., 99 (1977), 901-917.
  • [12] G. E. Sacks, Three aspects of recursive enumerability, in F. R. Drake and S. S. Wainer eds, Recursion Theory its Generalisations and Applications, Cambridge University Press, Cambridge, 1979.
  • [13] G. E. Sacks, On the limits of recursive enumerability, to appear.
  • [14] G. E. Sacks, Post's problem in /-recursion, to appear.
  • [15] G. E. Sacks, Selection and forcing, to appear.
  • [16] G. E. Sacks and T. A. Slaman, Inadmissible forcing, to appear.
  • [17] T. A. Slaman, Aspects of j-recursion, Ph.D. Thesis, Harvard University, Cam- bridge, MA, (1981). Department of Mathematics The University of Chicago 573If. University Avenue Chicago,Illinois 60687 USA