Nagoya Mathematical Journal

On $p$-adic Artin $L$-functions

Ralph Greenberg

Full-text: Open access

Article information

Nagoya Math. J., Volume 89 (1983), 77-87.

First available in Project Euclid: 14 June 2005

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27]
Secondary: 11R23: Iwasawa theory


Greenberg, Ralph. On $p$-adic Artin $L$-functions. Nagoya Math. J. 89 (1983), 77--87.

Export citation


  • [1] Barsky, D., Fonctions Zeta p-adiques d'une Classe de Rayon des Corps de Nombres Totalement-reels, Group d'etude d'analyse ultrametrique (1977-78).
  • [2] Cassou-Nogues, P., Valeurs aux entieres negatif des fonctions zeta et fonctions zeta p-adiques, preprint.
  • [3] Coates, J., p-adic L-functions and Iwasawa's theory, Alg. No. Theory, A. Frohlich, ed., Academic Press 1977.
  • [4] Deligne, P. and Ribet, K., Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227-286.
  • [5] Greenberg, R., On p-adic L-functions and cyclotomic fields, Nagoya Math. J., 56 (1974), 61-77.
  • [6] Greenberg, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139-158.
  • [7] Gross, B., On the behavior of p-adic L-functions at s 0, preprint.
  • [8] Iwasawa, K., Lectures on p-adic L-functions, Ann. Math. Studies 74, Princeton University Press, 1972.
  • [9] On Zi-extensions of algebraic numbers fields, Ann. of Math., 98 (1973), 246-326.
  • [10] On Zi-extensions of algebraic numbers fields, On p-adic representations associated with Zp-extensions, preprint.
  • [11] Ribet, K., Report on p-adic L-functions over totally real fields, Asterisque, 61 (1979), 177-192. Department of Mathematics University of Washington Seattle, Washington98195 USA