Nagoya Mathematical Journal

On spinor exceptional representations

J. W. Benham and J. S. Hsia

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 87 (1982), 247-260.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118786908

Mathematical Reviews number (MathSciNet)
MR0676594

Zentralblatt MATH identifier
0455.10013

Subjects
Primary: 10C05
Secondary: 10C02

Citation

Benham, J. W.; Hsia, J. S. On spinor exceptional representations. Nagoya Math. J. 87 (1982), 247--260. https://projecteuclid.org/euclid.nmj/1118786908


Export citation

References

  • [C] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978.
  • [Ci] J. W. S. Cassels, Rationale quadratische Formen, Jber. d. Dt. Math.-Verein., 82 (1980), 81-93.
  • [E] A. G. Earnest, Congruence conditions on integers represented by ternary quad- ratic forms, Pacific J. Math., 90 (1980), 325-333.
  • [EH] A. G. Earnest and J. S. Hsia, Spinor genera under field extensions II 2 un- ramified in the bottom field, Amer. J. Math., 100 (1978), 523-538.
  • [H] J. S. Hsia, Representations by spinor genera, Pacific J. Math., 63 (1976), 147- 152.
  • [Hi] J. S. Hsia, Arithmetic theory of integral quadratic forms, Queen's papers in pure and applied math., 54 (1980), 173-204.
  • [HKK] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quad- ratic forms, J. reine angew. Math., 301 (1978), 132-141.
  • [JW] B, W. Jones and G. L. Watson, On indefinite ternary quadratic forms, Canad. J. Math., 8 (1956), 592-608.
  • [K] M. Kneser, Darstellungsmasse indefiniter quadratischer Formen, Math. Zeit- schr., 77 (1961), 188-194.
  • [Ki] M. Kneser, Quadratische Formen, Vorlesungs-Ausarbeitung, Gttingen 1973/4.
  • [OM] O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, 1963.
  • [SP] R. Schulze-Pillot, Darstellung durch Spinorgeschlechter ternarer quadratischer Formen, J. Number Theory, 12 (1980), 529-540.
  • [SPi] R. Schulze-Pillot, Darstellung durch definite ternare quadratische Formen und das Bruhat- Tits-Gebaude der Spingruppe, Dissertation U, Gttingen 1979. Department of Mathematics Ohio State University 231 W. 18th Avenue Columbus, Ohio 43210 USA