Nagoya Mathematical Journal

Perturbed billiard systems. II. Bernoulli properties

Izumi Kubo and Hiroshi Murata

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 81 (1981), 1-25.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118786302

Mathematical Reviews number (MathSciNet)
MR0607071

Zentralblatt MATH identifier
0458.58014

Subjects
Primary: 58F11
Secondary: 28D05: Measure-preserving transformations 82A05

Citation

Kubo, Izumi; Murata, Hiroshi. Perturbed billiard systems. II. Bernoulli properties. Nagoya Math. J. 81 (1981), 1--25. https://projecteuclid.org/euclid.nmj/1118786302


Export citation

References

  • [] L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959), 873-876.Amer. Math. Soc. Transl. (2) 49 (1966), 167-170.
  • [] N. A. Friedman and D. S. Ornstein, On isomorphism of weak Bernoulli transfor- mations, Advances in Math. 5 (1970), 365-394.
  • [] G. Gallavotti and D. S. Ornstein, Billiards and Bernoulli schemes, Commun.math. Phys. 38 (1974), 83-101.
  • [] Sh. Ito, H. Murata and H. Totoki, Remarks on the isomorphism theorems for weak Bernoulli transformations in general case, Publ. RIMS, Kyoto Univ. 7 (1972), 541-580.
  • [] I. Kubo, Perturbed billiard systems I. The ergodicity of the motion of a particle in a compound central field, Nagoya Math. J. 61 (1976), 1-57.
  • [] I. Kubo, The ergodicity of the motion of a particle in a potential field, International symposium on mathematical problems in theoretical physics, Jan. 1975 Kyoto Japan, 141-148.
  • [] D. S. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Ad- vances in Math. 5 (1970), 339-348.
  • [] Springer-Verlag (1970), 178-218.
  • [] D. S. Ornstein and B. Weiss, Geodesic flows are Bernoullian, Israel J. Math. 14 (1973), 184-198.
  • [0] V. A. Rohlin and Ya G. Sinai, Construction and properties of invariant measur- able partitions, Dokl. Akad. Nauk SSSR 141 (1961), 1038-1041. Soviet Math. Dokl. 2 (1961), 1611-1614.
  • [1] Ya. G. Sinai, On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics, Dokl. Akad. Nauk SSSR 153 (1963), 1261-1264. Soviet Math. Dokl. 4 (1963), 1818-1822.
  • [2] Ya. G. Sinai, Dynamical systems with elastic reflections, Uspehi Math. Nauk 25 (1970), 141-192. Russian Math. Surveys 25 (1970), 137-189. Nagoya University Hiroshima University