Nagoya Mathematical Journal

Komplettierung semilokaler quasiausgezeichneter Ringe

Christel Rotthaus

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 76 (1979), 173-180.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118785940

Mathematical Reviews number (MathSciNet)
MR0550860

Zentralblatt MATH identifier
0388.13014

Subjects
Primary: 13J10: Complete rings, completion [See also 13B35]

Citation

Rotthaus, Christel. Komplettierung semilokaler quasiausgezeichneter Ringe. Nagoya Math. J. 76 (1979), 173--180. https://projecteuclid.org/euclid.nmj/1118785940


Export citation

References

  • [1] Andre, M., Localisation de la lissite formelle, Manuscripta Math. 13 (1974), 297- 307.
  • [] Bourbaki, N., Elements of Mathematics Commutative Algebra, Paris, Hermann, (1972).
  • [3] Grothendieck, A., Elements de Geometrie algebrique, Inst. haut. tud. sci., Publ. math. 20 (1964).
  • [4] Grothendieck, Elements de Geometrie algebrique, Inst. haut. Etud. sci., Publ. math. 24 (1965).
  • [5] Matsumura, H., Commutative Algebra, New York, Benjamin (1970).
  • [6] Matsumura, Formal power series rings over polynomial rings I, in Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Y. Akizuki, Tokyo, Kinokuniya (1973), 511-520.
  • [7] Marot, J., Sur les anneaux universellement japonais, Bull. Soc. math. France 103 (1975),103-111.
  • [8] Nomura, M., Formal power series rings over polynomial rings II, in Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Y. Akizuki, Tokyo, Kinokuniya (1973), 521-528.
  • [9] Rotthaus, C, Nicht ausgezeichnete, universell japanische Ringe, Math. Z. 152 (1977),107-125.
  • [10] Rotthaus, C, Universell japanische Ringe mit nicht ofenem regularem Ort, Nagoya Math. J. 74 (1979), 123-135.
  • [11] Valabrega, P., A few theorems on completion of excellent rings, Nagoya Math. J. 61 (1976), 127-133. MathematischesInsttut der Universitt Milnster