Nagoya Mathematical Journal

Extension of holomorphic $L^2$-functions with weighted growth conditions

Klas Diederich and Gregor Herbort

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 126 (1992), 141-157.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118783179

Mathematical Reviews number (MathSciNet)
MR1171597

Zentralblatt MATH identifier
0759.32002

Subjects
Primary: 32D15: Continuation of analytic objects
Secondary: 32F15

Citation

Diederich, Klas; Herbort, Gregor. Extension of holomorphic $L^2$-functions with weighted growth conditions. Nagoya Math. J. 126 (1992), 141--157. https://projecteuclid.org/euclid.nmj/1118783179


Export citation

References

  • [A-V] Andreotti, A.-Vesentini, E., Carleman estimates for the Laplace-Beltrami equa- tion on complex manifolds, I.H.E.S. Publ., 25 (1965), 313-362.
  • [B-D] Bonneau, P.- Diederich, K.,Integral solution operators for the Cauchy-Riemann equations on pseudoconvex domains, Math. Ann., 286 (1990), 77–100.
  • [D-Fl] Diederich, K. -Fornaess, J. E., Pseudoconvex domains with real-analytic bound- ary, Ann. Math., 107 (1978), 371-384.
  • [D-F2] Diederich, K. -Fornaess, J. E., Proper holomorphic maps onto pseudoconvex do- mains with real-analytic boundary Ann. Math., 110 (1979), 575-592.
  • [D-F3] Diederich, K. -Fornaess, J. E., Pseudoconvex Domains Bounded Strictly Pluri- subharmonic Exhaustion Functions, Invent. Math., 39 (1977), 129-141.
  • [D-H-O] Diederich, K. -Herbort, G. -Ohsawa, T., The Bergman kernel on uniformly ex- tendable pseudoconvex domains, Math. Ann., 273 (1986), 471–478.
  • [D-L] Diederich, K. -Lieb, I., Konvexita't in der komplexen Analysis DMV-Seminar, Band 2. Birkhauser Basel-Boston-Stuttgart, 1981.
  • [HI] Hormander, L., L2 estimates and existence for the d operator, Acta Math., 113 (1965),89-152.
  • [H2] Hormander, An Introduction to Complex Analysis in Several Variables. 2nd Edition-
  • [N] Nakano, S., Extension of holomophic functions with growth conditions, Publ. RIMS, Kyoto Univ., 22 (1986), 2 4 7 - 2 5 8.
  • [01] Ohsawa, T., Boundary Behavior of the Bergman Kernel Function Publ. RIMS, Kyoto Univ., 16 (1984), 8 9 7 - 9 0 2.
  • [02] Ohsawa, On the extension of L2-holomorphic functions II, Publ. RIMS, Kyoto Univ. 24(1988), 265-275.
  • [0-T] Ohsawa, T. -Takegoshi, K., On the extension of L2-holomorphic functions, Math. Z., 195(1987), 197-204.
  • [Y] Yoshioka, T., Cohomologie ft estimations L2 avec poids plurisousharmoniques et extension des fonctions holomorphes avec controle de la croissance, Osaka J. Math., 19 (1982), 7 8 7 - 8 1 3. Fachbereich Mathematik Bergische Universitat-Gesamthochschule Wuppertal Gau0stra0e2O D-56 Wuppertal