Nagoya Mathematical Journal
- Nagoya Math. J.
- Volume 125 (1992), 1-14.
On nilpotent extensions of algebraic number fields. I
Katsuya Miyake and Hans Opolka
Full-text: Open access
Article information
Source
Nagoya Math. J., Volume 125 (1992), 1-14.
Dates
First available in Project Euclid: 14 June 2005
Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118783087
Mathematical Reviews number (MathSciNet)
MR1156900
Zentralblatt MATH identifier
0647.12005
Subjects
Primary: 11R32: Galois theory
Secondary: 11R34: Galois cohomology [See also 12Gxx, 19A31]
Citation
Miyake, Katsuya; Opolka, Hans. On nilpotent extensions of algebraic number fields. I. Nagoya Math. J. 125 (1992), 1--14. https://projecteuclid.org/euclid.nmj/1118783087
References
- [B-E] N.Blackburn and L. Evens, Schur multipliers of p-groups, J. reine angew Math., 309 (1979), 100-113.
- [E-S] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton U.P., Princeton, 1952.
- [Fu] Y. Furuta, A norm residue map for central extensions of an algebraic number field, Nagoya Math. J., 93 (1984), 61-69.Mathematical Reviews (MathSciNet): MR86m:11090
Zentralblatt MATH: 0526.12009
Project Euclid: euclid.nmj/1118787429 - [He] F.-P.Heider,ZahlentheoretischeKnoten unendlicher Erweiterungen, Arch.Math., 37 (1981), 341-352.Mathematical Reviews (MathSciNet): MR84i:12006
Zentralblatt MATH: 0475.12009
Digital Object Identifier: doi:10.1007/BF01234367 - [Iy] S. Iyanaga (ed.), The Theory of Numbers, North-Holland, Amsterdam-Oxford, and Amer. Elsevier, NewYork,1975.Mathematical Reviews (MathSciNet): MR56:2953
- [Ka] G. Karpilovsky, The Schur Multiplier, Clarendon Press, Oxford, 1987.
- [Kt] S. Katayama, On the Galois cohomology groups of Ck/Dk Japan. J. Math., 8 (1982), 407-415.
- [Ko] H. Koch, Galoissche Theorie der p-Erweiterungen, Springer-Verlag, Berlin-Hei- delberg-New York, 1970.
- [Mi] K. Miyake, Central extensions and Schur's multiplicators of Galois groups, Na- goya Math. J., 90 (1983), 137-144.Mathematical Reviews (MathSciNet): MR84m:12013
Zentralblatt MATH: 0502.12007
Project Euclid: euclid.nmj/1118787181 - [Ng] T. Nguyen-Quang-Do, Sur la structure galoisienne des corps locaux et la theorie dwasawa, Compos. Math., 46 (1982), 85-119.
- [Se] J. P. Serre, Modular forms of weight one and Galois representations, in Al- gebraic number fields, ed. by A. Frhlich, Ac. Press, London, 1977.
- [Sh] S. S. Shatz, Profinite Groups, Arithmetic, and Geometry, Princeton U.P.,Prince- ton, 1972. Katsuya Miyake Department of Mathematics Collegeof General Education Nagoya University Nagoya, JJf-01 Japan Hans Opolka Mathematisches Institiit Universitt Gttingen Bunsenstrasse3-5 D-SJfOO Gttingen B.R.D. Institut fur Algebra und Zahlentheorie Technische Universitdt Braunschweig Pockelsstrae 1U D-W-3300Braunschweig B.R.D.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Some restrictions on the Betti numbers of a nilpotent Lie
algebra
Niroomand, Peyman and Russo, Francesco G., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2014 - Log-concavity of the cohomology of nilpotent Lie algebras in characteristic two
Cairns, Grant, Journal of Generalized Lie Theory and Applications, 2009 - Polynomial bound for the nilpotency index of finitely generated nil algebras
Domokos, Mátyás, Algebra & Number Theory, 2018
- Some restrictions on the Betti numbers of a nilpotent Lie
algebra
Niroomand, Peyman and Russo, Francesco G., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2014 - Log-concavity of the cohomology of nilpotent Lie algebras in characteristic two
Cairns, Grant, Journal of Generalized Lie Theory and Applications, 2009 - Polynomial bound for the nilpotency index of finitely generated nil algebras
Domokos, Mátyás, Algebra & Number Theory, 2018 - Homomorphic images of pro-nilpotent algebras
Bergman, George M., Illinois Journal of Mathematics, 2011 - Symplectic structures on free nilpotent Lie algebras
del Barco, Viviana, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2019 - Structure of the $C^*$-Algebras of Nilpotent Lie Groups
SUDO, Takahiro, Tokyo Journal of Mathematics, 1996 - A computer-based approach to the classification of nilpotent Lie algebras
Schneider, Csaba, Experimental Mathematics, 2005 - Eggert's Conjecture for 2-Generated Nilpotent Algebras
Korbelar, Miroslav, Journal of Generalized Lie Theory and Applications, 2015 - The centralizer of a nilpotent section
McNinch, George J., Nagoya Mathematical Journal, 2008 - Nilpotent class field theory for manifolds
Kim, Junhyeung, Kodani, Hisatoshi, and Morishita, Masanori, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2013
