Nagoya Mathematical Journal

Rees algebras of nonsingular equimultiple prime ideals

M. Herrmann, J. Ribbe, and N. V. Trung

Full-text: Open access

Article information

Nagoya Math. J., Volume 124 (1991), 1-12.

First available in Project Euclid: 14 June 2005

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13A30: Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics
Secondary: 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05] 13H15: Multiplicity theory and related topics [See also 14C17]


Herrmann, M.; Ribbe, J.; Trung, N. V. Rees algebras of nonsingular equimultiple prime ideals. Nagoya Math. J. 124 (1991), 1--12.

Export citation


  • [CST] N. T. Cuong, P. Schenzel, N. V. Trung, Verallgemeinerte Cohen-Macaulay- Moduln, Math. Nachr., 85 (1978), 57-73.
  • [HI1] M. Herrmann, S. Ikeda, Remarks on liftings of Cohen-Macaulay property, Na- goya Math. J., 9,2 (1983), 121-132.
  • [HI2] M. Herrmann, On the Gorenstein property of Rees algebras, Manuscripta math., 59 (1987), 471-490.
  • [HIO] M. Herrmann,S. Ikeda, U. Orbanz, Equimultiplicity and blowing up, (Springer, Berlin-Heidelberg-New York, 1988).
  • [HMV] M. Herrmann, B. Moonen, 0. Villamayor, Ideals of linear type and some vari- ants, Queen's papers in Pure and Appl. Math. Nr. 83. The Curves Seminar at Queen's, Vol. VI, 1989.
  • [I] S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya Math. J., 102 (1986), 135-154.
  • [T] N. V. Trung, ber die bertragung von Ringeigenschaften zwischen R und R/(F), Math. Nachr., 92 (1979), 215-229.
  • [TI] N.V. Trung, S. Ikeda, When is the Rees algebra Cohen-Macaulay,Comm. Alg., 17 (12) (1989), 2893-2922. Mathematisches Institut der Universitdt zn Kln 5000 Khi 41 Germany Mathematisches Institut der Universitdt zu Kln 5000 Kln U Germany