Nagoya Mathematical Journal

Siegel modular forms and theta series attached to quaternion algebras

Siegfried Böcherer and Rainer Schulze-Pillot

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 121 (1991), 35-96.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118782781

Mathematical Reviews number (MathSciNet)
MR1096467

Zentralblatt MATH identifier
0726.11030

Subjects
Primary: 11F55: Other groups and their modular and automorphic forms (several variables)
Secondary: 11F27: Theta series; Weil representation; theta correspondences 11F41: Automorphic forms on GL(2); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces [See also 14J20]

Citation

Böcherer, Siegfried; Schulze-Pillot, Rainer. Siegel modular forms and theta series attached to quaternion algebras. Nagoya Math. J. 121 (1991), 35--96. https://projecteuclid.org/euclid.nmj/1118782781


Export citation

References

  • [An1] A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren d. math. Wiss. 286, Berlin-Heidelberg-New York 1987.
  • [An2] A. N. Andrianov, Degenerations of rings of Hecke operators on spaces of theta series, Proc. of the Steklov Institute of Math., 1983, no. 3, 1-17.
  • [An3] A. N. Andrianov, Duality in Sieges theorem on representations by a genus of quadratic forms and the averaging operator, Math. USSR Sbornik, 50 (1985), 1-10.
  • [B1] S. Bcherer, ber die Funktionalgleichung automorpher L-Punktionen zur Sie- gelschen Modulgruppe, J. f. d. reine und angew. Math., 362 (1985), 146-168.
  • [B2] S. Bcherer, Ein Rationalitatssatz fur formale Heckereihen zur Siegelschen Modul- gruppe, Abh. Math. Sem. Univ. Hamburg, 56 (1986), 35-47.
  • [B3] S. Bcherer, Siegel modular forms and theta series in Proceedings of the AMS Sum- mer Research Institute Theta Functions, Bowdoin College 1987, Providence 1989.
  • [BRa] S. Bcherer and S. Raghavan, On Fourier coefficients of Siegel modular forms, J. f. d. reine und angew. Math., 384 (1988), 80-101.
  • [Ca1] W. Casselmann, On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314.
  • [Ca2] W. Casselmann, An assortment of results on representations of GLt(k), p. 1-54 in Modular functions of one variable II, Lecture Notes Math., 349, Berlin-Heidelberg-New York 1973.
  • [El] M. Eichler, Quadratische Formen und orthogonale Gruppen, Berlin-Gttingen- Heidelberg, 1952.
  • [E2] M. Eichler, Quaternare quadratische Formen und die Riemannsche Vermutung fur die Kongruenzzetafunktion, Arch. Math., 5 (1954), 355-366.
  • [E3] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren, J. f. d. reine und angew. Math., 195 (1956), 127-151.
  • [E4] M. Eichler,The basis problem for modular forms and the traces of the Hecke opera- tors, p. 76-151 in Modular functions of one variable I, Lecture Notes Math.,320, Berlin-Heidelberg-New York 1973.
  • [Ev] S. A. Evdokimov, Action of the irregular Hecke operator of index p on the theta series of a quadratic form, J. Sov. Math., 38 (1987), 2078-2081.
  • [Fe] P. Feit, Poles and residues of Eisenstein series for symplectic and unitary groups, Mem. AMS, 61 (1986), no. 346.
  • [Fre1] E. Freitag, Siegelsche Modulfunktionen, Berlin-Heidelberg-New York 1983.
  • [Fre2] E. Freitag, Die Invarianz gewisser von Thetareihen erzeugter Vektorraume unter Heckeoperatoren, Math. Zeitschrift, 156 (1977), 141-155.
  • [Ga] P. Garrett, Decomposition of Eisenstein series Applications, in Automorphic forms in several variables (Taniguchi symposium), Boston 1984.
  • [Ge] S. Gelbart, Automorphic forms on adele groups, Princeton 1975.
  • [GR] J. Goldman and G.-C. Rota, On the foundations of combinatorial theory IV, Studies in applied math., 49 (1970), 239-258.
  • [Gr] B. Gross, Heights and the special values of L-series, p. 115-187 in Number Theory (Montreal 1985), CMS Conf. Proc. 7, Providence 1987.
  • [Ha1] M. Harris, The rationality of holomorphic Eisenstein series, Invent, math., 63 (1981), 305-310.
  • [Ha2] M. Harris, Eisenstein series on Shimura varieties, Ann. of math., 119 (1984), 59-94.
  • [HiSa] H. Hijikata and H. Saito, On the representability of modular forms by theta series, p. 13-21 in Number Theory, Algebraic Geometry and Commutative Al- gebra, in honor of Y. Akizuki, Tokyo 1973.
  • [H-PS] R. Howe and I. I. Piatetski-Shapiro, Some examples of automorphic forms on Spif Duke Math. J., 50 (1983), 55-106.
  • [Ki1] Y. Kitaoka, Siegel modular forms and representation by quadratic forms, Bom- bay 1986.
  • [Ki2] Y. Kitaoka, Representations of quadratic forms and their applications to Selberg's zeta function, Nagoya Math. J., 63 (1976), 153-162.
  • [Ki3] Y. Kitaoka, A remark on the transformation formula of theta functions associated to positive definite quadratic forms, J. Number Th., 12 (1980), 224-229.
  • [Ki4] Y. Kitaoka, Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J., 95 (1984), 73-84.
  • [Kli] H. Klingen, Zum Darstellungssatz fur Siegelsche Modulformen, Math. Z., 102 (1967), 30-43.
  • [Kn] M. Kneser, Witts Satz fur quadratische Formen ber lokalen Ringen, Nachr. d. Akad. d. Wiss. Gttingen 1972, 195-204.
  • [Kra] J. Kramer, Jacobiformen und Thetareihen, Manuscripta math., 54 (1986), 279- 322.
  • [Kri] A. Krieg, Das Vertauschungsgesetz zwischen Hecke-Operatoren und dem Sie- gelschen -Operator, Arch. Math., 46 (1986), 323-329.
  • [Ku] S. Kudla, On the local theta correspondence, Invent, math.,3 (1986), 229-255.
  • [KuRa] S. Kudla and S. Rallis, On the Weil-Siegel formula, J. f. d. reine u. angew. Math., 837 (1988), 1-68.
  • [Li] W. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285-315.
  • [Ma] H. Maa, SiegePs modular forms and Dirichlet series, Lect. Notes Math., 216, Berlin-Heidelberg-New York 1971.
  • [O] A. Ogg, On a convolution of L-series, Invent, math., 7 (1969), 279-312.
  • [OM] O. T. O'Meara, Introduction to quadratic forms, Grundlehren d. math. Wiss., 117, Berlin-Heidelberg-New York 1973.
  • [Pe] P. Perrin, Representation de Schrdinger, indice de Maslov et groupe meta- plectique, p. 370-407 in Lect. Notes Math., 880, Berlin-Heidelberg-New York 1981.
  • [Pet] H. Petersson, ber die Berechnung der Skalarprodukte ganzer Modulformen,
  • [Pf] H. Pfeuffer, Einklassige Geschlechter totalpositver quadratischer Formen in total-reellen algebraischen Zahlkrpern, J. Number Th., 3 (1971), 371-411.
  • [Pi] A. Pizer, Type numbers of Eichler orders, J. f. d. reine u. angew. Math., 264 (1973), 76-102.
  • [Ra1] S. Rallis, L-functions and the oscillator representation, Lect. Notes Math., 1245, Berlin-Heidelberg-New York 1987.
  • [Ra2] S. Rallis, Langlands functoriality and the Weil representation, Amer. J. of Math., 104 (1982), 469-515.
  • [Ra3] S. Rallis, On the Howe duality conjecture, Comp. Math., 51 (1984), 333-399.
  • [Ra4] S. Rallis, Injectivity properties of liftings associated to Weil representations,Comp. Math., 52 (1984), 139-169.
  • [Rao] R. Rao, On some explicit formulas in the theory of the Weil representation, unpublished manuscript.
  • [Ran] R. Rankin, The scalar product of modular forms, Proc. of the London Math. Soc, 3 (1952), 198-217.
  • [Sa] M. Saito, Representations unitaires des groupes symplectiques, J. Math. Soc. Japan, 24 (1972), 232-251.
  • [Shi1] G. Shimura, Confluent hypergeometric functions on tube domains. Math. Ann., 260 (1982), 269-302.
  • [Shi2] G. Shimura, On Eisenstein series of half-integral weight, Duke Math. J., 52 (1985), 281-314.
  • [Shz] Shimizu, Theta series and automorphic forms on GL2, J. of the Math. Soc. of Japan, 24 (1972), 638-683.
  • [SP] R. Schulze-Pillot, A linear dependence of theta series of degree and weight two, in Proceedings of the Journees Arithmetiques Ulm 1987, Lect. Notes Math. 1380, Berlin-Heidelberg-New York 1989.
  • [Tarn] T. Tamagawa, On the -functions of a division algebra, Ann. Math.,77 (1963), 387-405.
  • [Tan] Y. Tanigawa, Construction of Siegel modular forms of degree three and com- mutation relations of Hecke operators, Nagoya Math. J., 100 (1985), 83-96.
  • [Vi1] M.-F. Vigneras, Arithmetique des algebres de quaternions, Lect. Notes Math., 800, Berlin-Heidelberg-New York 1980.
  • [Vi2] M.-F. Vigneras, Correspondences entre representations automorphes de GL(2) sur une extension quadratique de GSp(4) sur Q, conjecture locale de Langlands pour GSp(4), p. 463-527 in Contemporary Mathematics, 53 (1986).
  • [Wa1] J. L. Waldspurger, Correspondance de Shimura, J. Math, pures et appl., 59 (1980),1-133.
  • [Wa2] J. L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math, pures et appl., 60 (1981), 375-484.
  • [Wa3] J. L. Waldspurger, Correspondance de Shimura et quaternions, unpublished manuscript.
  • [War] G. Warner, Harmonic analysis on semi-simple Lie groups I, Grundlehren d. math. Wiss. 188, Berlin-Heidelberg-New York 1972.
  • [We] R. Weissauer, Stabile Modulformen und Eisensteinreihen, Lect. Notes Math., 1219, Berlin-Heidelberg-New York 1986.
  • [Y1] H. Yoshida, Siegel's modular forms and the arithmetic of quadratic forms, In- vent, math., 60 (1980), 193-248.
  • [Y2] H. Yoshida, On Siegel modular forms obtained from theta series, J. f. d. reine u. angew. Math., 352 (1984), 184-219.
  • [Y3] H. Yoshida, The action of Hecke operators on theta series, p. 197-238 in Algebraic and topological theories–to the memory of Dr. T. Miyake–, 1985.
  • [Zh] N.A. Zharkovskaya, The Siegel operator and Hecke operators, FunctionalAnal. Appl., 8 (1974), 113-120. Siegfried Bocherer Mathematisches Institut der Universitt Freiburg Hebelst.29 D-7800Freiburg Rainer Schulze-Pillot Fakultdt fur Mathematik, SFB 34 Universitut Bielefeld Postfach8640 D-4800 Bielefeld

See also

  • See also: Siegfried Böcherer, Rainer Schulze-Pillot. Siegel modular forms and theta series attached to quaternion algebras. II and Errata. Nagoya Mathematical Journal vol.147, (1997), pp. 71-106.