Nagoya Mathematical Journal

Young diagrammatic methods in noncommutative invariant theory

Yasuo Teranishi

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 121 (1991), 15-34.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118782780

Mathematical Reviews number (MathSciNet)
MR1096466

Zentralblatt MATH identifier
0728.16010

Subjects
Primary: 05E15: Combinatorial aspects of groups and algebras [See also 14Nxx, 22E45, 33C80]
Secondary: 13D40: Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series 13F50: Rings with straightening laws, Hodge algebras 20G20: Linear algebraic groups over the reals, the complexes, the quaternions

Citation

Teranishi, Yasuo. Young diagrammatic methods in noncommutative invariant theory. Nagoya Math. J. 121 (1991), 15--34. https://projecteuclid.org/euclid.nmj/1118782780


Export citation

References

  • [D-P] C. De Contini and C. Procesi, A characteristic free approach to invariant theory, Adv. in Math.,21 (1976), 330-354.
  • [D-R-S] P. Doubilet, G. -C. Rota, and J. Stein, On the foundation of combinatorial theo- ry IX. Combinatorial method in invariant theory, Stud. Appl. Math.,53 (1974), 185-216.
  • [K] G. R. Kempf, Computing invariants, pp. 81-94 in Invariant Theory, Lecture Notes in Math., No. 127, Springer, 1987.
  • [Kh] V. K. Kharchenko, Algebras of invariants of free algebras, Algebra i Logika, 17 (1978), 478-487 (Russian) English translation Algebra and Logic 17 (1978), 316-321.
  • [Ko] A. N. Koryukin, Noncommutative invariants of reductive groups, Algebra i Logika, 23 (1984, 419-429 (Russian) English translation Algebra and Logic, 23 (1984), 290-296.
  • [K-R] J. P. S. Kung and G. -C. Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. (New Series), 10 (1985), 27-85.
  • [L] D. R. Lane, Free algebras of rank two and their automorphisms, Ph. D. Thesis, Betford College, London, 1976.
  • [Le] L. Le Bruyn, Trace rings of generic 2 by 2 matrices, Mem. Ams Amer. Math. Soc. 363 (1987).
  • [M] I. G. MacDonald, Symmetric Functions and Hall Polynomials, Oxford Uni- versity Press, Oxford, 1979.
  • [N] E. Noether, Der Endlichkeitessatz der Invarianten endlichen Gruppen, Math. Ann., 77 (1916), 89-92.
  • [PI] V. Popov, Modern development in invariant theory, pp. 394-406 in Proc. of I. C. M. Barkeley 1986.
  • [P2] V. Popov, Constructive invariant theory, Asterisque, 87-88 (1981), 303-334.
  • [Pr] C. Procesi, The invariant theory of nxn matrices, Adv. of Math., 19 (1976), 306-381.
  • [T] T. Tambour, Examples of -algebras and generating functions, preprint.
  • [Tel] Y. Teranishi, Noncommutative invariant theory, 321-332, in Perspectives in Ring Theory, Nato ASI Series 233, Kluwer Academic Publishers, 1988.
  • [Te2] Y. Teranishi, Noncommutative classical invariant theory, Nagoya Math. J., 112 (1988), 153-169.
  • [Te3] Y. Teranishi, Universal induced characters and restriction rules for the classical groups, Nagoya Math. J., 117 (1990), 173-205.
  • [W] H. Weyl, The Classical Groups, Princeton University Press, Princeton, 1946. Department of Mathematics School of Science Nagoya University Chikusa-ku, Nagoya, JfJ-Ol Japan