Nagoya Mathematical Journal

Unit theorems on algebraic tori

Hyun Kwang Kim

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 112 (1988), 117-124.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118781119

Mathematical Reviews number (MathSciNet)
MR0974267

Zentralblatt MATH identifier
0698.20033

Subjects
Primary: 11S40: Zeta functions and $L$-functions [See also 11M41, 19F27]

Citation

Kim, Hyun Kwang. Unit theorems on algebraic tori. Nagoya Math. J. 112 (1988), 117--124. https://projecteuclid.org/euclid.nmj/1118781119


Export citation

References

  • [1] E. Artin, ber Einheiten relativ galoisscher Zahlkrper, Crelle Journal, 167 (1932), 153-156.
  • [2] C. W. Curtis and I. Reiner, Methods of representation theory with application to finite groups and orders, 1, John Wiley Sons Inc., 1981.
  • [3] M. J. Herbrand, Nouvelle demonstration et generalisation d'un theoreme de Minkowski, Comptes rendus, 191 (1930), 1282-1285.
  • [4] M. J. Herbrand, Sur les unites d'un corps algebrique, Comptes rendus, 192 (1931), 24-27.
  • [5] R. L. Long, Algebraic number theory, Marcel Dekker Inc., 1977, pp. 57-65.
  • [6] T. Ono, On some arithmetic properties of linear algebraic groups, Ann. of Math., 70, no.2 (1959), 266-290.
  • [7] T. Ono, Arithmetic of algebraic tori, Ann. of Math., v. 74, no.1 (1961), 101-119.
  • [8] T. Ono, Arithmetic of algebraic groups and its applications, Lecture Notes, Rikkyo 1986.
  • [9] A. Weil, Adeles and algebraic groups, Birkhauser, 1982. Department of Mathematics Pohang Institute of Science and Technology P.O. Box 125 POHANG 790, KOREA