Nagoya Mathematical Journal

On Segre products of affine semigroup rings

Lê Tuân Hoa

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 110 (1988), 113-128.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118780961

Mathematical Reviews number (MathSciNet)
MR0945909

Zentralblatt MATH identifier
0655.13024

Subjects
Primary: 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05]

Citation

Lê, Tuân Hoa. On Segre products of affine semigroup rings. Nagoya Math. J. 110 (1988), 113--128. https://projecteuclid.org/euclid.nmj/1118780961


Export citation

References

  • [1] Badescu, L., Oncertain isolated singularities, Nagoya Math. J.,61 (1976), 205-220.
  • [2] Barcanescu, S., Gorensteiness of Segre-Veronesegraded algebras, preprint 1979.
  • [3] Barshay, J., On the zeta function of biprojective complete intersections, Trans. Amer. Math. Soc, 135 (1969), 447-458.
  • [4] Chow, W. L., On unmixedness theorem, Amer. J. Math., 86 (1964), 799-822.
  • [5] Cooke, G.E. andFinney, R. L., Homology of cell complexes, Math. Notes, Princeton Univ. Press 1967.
  • [6] Cuong, N. T., Schenzel, P. and Trung, N. V., Verallgemeinerte Cohen-Macaulay- Moduln, Math. Nachr., 85 (1978), 57-73.
  • [7] Goto, S., Buchsbaum rings of maximal embedding dimension, J. Algebra, 76 (1982), 494-508.
  • [8] and Watanabe, K., On graded rings I, J. Math. Soc. Japan, 30 (1978), 179-213.
  • [9] Hartshorne, R., Algebraic geometry, Springer-Verlag, 1977.
  • [10] Reisner, G., Cohen-Macaulay quotients of polynomial rings, Adv. in Math., 21 (1976), 30-49.
  • [11] Solcan, S., ber die Abhangigkeit der Buchsbaum-Eigenschaft von der Charak- teristik des Grundkrpers, Math. Slovaka, 31 (1981), 437-444.
  • [12] Spanier, E. H., Algebraic topology, McGraw-Hill, 1966.
  • [13] Stanley, R. P., Linear diophantine equations and local cohomology, Invent. Math., 68 (1982), 175-193.
  • [14] Stckrad, J. and Vogel, W., Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 726-746.
  • [15] Trung, N. V., Classification of the double projections of Veronese varieties, J. Math. Kyoto Univ., 2,2 (1983), 567-581.
  • [16] Trung, N. V. and Hoa, L. T., Affine semigroups and Cohen-Macaulay rings gener- ated by monomials, Trans. Amer. Math. Soc, 298 (1986), 145-167.
  • [17] Trung, N. V. and Ikeda, S., When is the Rees algebra Cohen-Macaulay,preprint. Institute of Mathematics P. O. Box 631, Bo Ho, Hanoi, Vietnam Sektion Mathematik M. L. Universitdt Halle Halle (S) 4010 DDR