Nagoya Mathematical Journal

Discriminants in the invariant theory of reflection groups

Peter Orlik and Louis Solomon

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 109 (1988), 23-45.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118780889

Mathematical Reviews number (MathSciNet)
MR0931949

Zentralblatt MATH identifier
0614.20032

Subjects
Primary: 32C40
Secondary: 20H99: None of the above, but in this section

Citation

Orlik, Peter; Solomon, Louis. Discriminants in the invariant theory of reflection groups. Nagoya Math. J. 109 (1988), 23--45. https://projecteuclid.org/euclid.nmj/1118780889


Export citation

References

  • [1] Etsuko Bannai, Fundamental groups of the spaces of regular orbits of the finite unitary reflection groups of dimension 2, J. Math. Soc. Japan, 28 (1976), 447-454.
  • [2] H. S. M. Coxeter, The symmetry groups of the regular complex polygons, Arch., Math., 13 (1962), 86-97.
  • [3] H. S. M. Coxeter, Finite groups generated by unitary reflections, Abhandlungen Math. Sem. Univ. Hamburg, 31 (1967), 127-135.
  • [4] H. S. M. Coxeter, Regular Complex Polytopes, Cambridge Univ. Press, 1974.
  • [5] P. Deligne, Les immeubles des groupes de tresses generalises, Invent, math., 17 (1972), 273-302.
  • [6] J. H. Grace and A. Young, The Algebra of Invariants, Cambridge Univ. Press, 1903.
  • [7] F. Klein, Vorlesungen Uber das Ikosaeder, Teubner, Leipzig, 1884.
  • [8] D. W. Koster, Complex Reflection Groups, Thesis, Univ. of Wisconsin, Madison, 1975.
  • [9] H. Maschke, Aufstellung des vollen Formensystems einer quaternaren Gruppe von 51840 linearen substitutionen, Math. Ann., 33 (1888), 317-344.
  • [10] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies 61, Princeton Univ. Press, 1968.
  • [11] T. Nakamura, A Note on the K(y 1) property of the orbit space of the unitary reflection group G(m, I, n), Sci. Papers College of Arts and Sciences, Univ. Tokyo, 33 (1983), 1-6.
  • [12] P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent, math., 59 (1980), 77-94.
  • [13] P. Orlik and L. Solomon, Complexes for reflection groups, in Proc. Midwest Algebraic Geometry Conf., Lecture Notes in Math., No.862, Springer Verlag (1981), 193-207.
  • [14] P. Orlik and L. Solomon, The Hessian map in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 1-21.
  • [15] K. Saito, On a Linear Structure of a Quotient Variety by a Finite Reflexion Group, RIMS Report 288, Kyoto 1979.
  • [16] K. Saito, T. Yano and J. Sekiguchi, On a certain generator system of the ring of invariants of a finite reflection group, Comm. Algebra, 8 (1980), 373-408.
  • [17] G. C. Shephard, Regular complex polytopes, Proc. London Math. Soc, (3) 2 (1952), 82-97.
  • [18] G. C. Shephard, Unitary groups generated by reflections, Canad. J. Math., 5 (1953), 364-383.
  • [19] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304.
  • [20] T. A. Springer, Regular elements of finite reflection groups, Invent, math., 25 (1974), 159-198.
  • [21] T. A. Springer, Invariant Theory, Lecture Notes in Math., No. 585, Springer Verlag, 1977.
  • [22] H. Terao, Discriminant of a holomorphic map and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 30 (1983), 379-391.
  • [23] H. W. Turnbull, The Theory of Determinants, Matrices and Invariants, 3rd Ed., Dover 1960.
  • [24] T. Yano and J. Sekiguchi, The microlocal structure of weighted homogeneous polynomials associated with Coxeter systems I, II, Tokyo J. Math., 2 (1979), 193-219 4 (1981), 1-34. University of Wisconsin Madison, WI 53706, U.S.A.