Nagoya Mathematical Journal

Generalized Radon transform and Lévy's Brownian motion. II

Akio Noda

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 105 (1987), 89-107.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118780640

Mathematical Reviews number (MathSciNet)
MR0881009

Zentralblatt MATH identifier
0592.60067

Subjects
Primary: 60G60: Random fields
Secondary: 44A15: Special transforms (Legendre, Hilbert, etc.) 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 60G15: Gaussian processes 60J65: Brownian motion [See also 58J65]

Citation

Noda, Akio. Generalized Radon transform and Lévy's Brownian motion. II. Nagoya Math. J. 105 (1987), 89--107. https://projecteuclid.org/euclid.nmj/1118780640


Export citation

References

  • [1] R. V.Ambartzumian, Combinatorial integral geometry, with applications to mathe- matical stereology, John Wiley Sons, Chichester, 1982.
  • [2] P.Assouad, Produit tensoriel, distances extremales etrealisation decovariance, I etII, C. R.Acad. Sci. Paris Ser. A,288 (1979), 649-652 et675-677.
  • [3] P.AssouadetM.Deza, Espaces metriques plongeables dans un hypercube Aspects combinatories, Ann. Discrete Math., 8 (1980), 197-210.
  • [4] C.Berg, J.P.R.Christensen and P.Ressel, Harmonic analysis onsemigroups, Springer-Verlag, New York,1984.
  • [5] E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc, 145 (1969), 323- 345.
  • [6] J. Bretagnolle, D. Dacunha-Castelle et J. L. Krivine, Lois stables et espaces L Ann. Inst. H. Poincare Sect. B, 2 (1966), 231-259.
  • [7] N. N. Chentsov, Levy Brownian motion for several parameters and generalized white noise, Theory Probab. AppL, 2 (1957), 265-266 (English translation).
  • [8] G. Choquet, Lectures on analysis, Vol. Ill, W. A. Benjamin, New York, 1969.
  • [9] S. R. Deans, The Radon transform and some of its applications, John Wiley Sons, New York, 1983.
  • [10] L. E. Dor, Potentials and isometric embeddings in Li, Israel J. Math., 24 (1976), 260-268.
  • [11] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G.Tricomi, Higher transcendental functions (Bateman manuscript project), Vol. II, McGraw-Hill, New York, 1953.
  • [12] S. Helgason, The Radon transform, Birkhauser, Boston, 1980.
  • [13] T. Hida, Kei-Seung Lee and Sheu-San Lee, Conformal invariance of white noise, Nagoya Math. J., 98 (1985), 87-98.
  • [14] P. Levy, Theorie de l'addition des variables aleatoires, Gauthier-Villars, Paris, 1954.
  • [15] P. Levy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1965.
  • [16] D. Ludwig, The Radon transform on Euclidean space, Comm. Pure Appl. Math., 19 (1966), 49-81.
  • [17] H. P. McKean, Brownian motion with a several-dimensional time, Theory Probab. Appl., 8 (1963), 335-354.
  • [18] A. Noda, Levy's Brownian motion Total positivity structure of M(f)-process and deterministic character, Nagoya Math. J., 94 (1984), 137-164.
  • [19] A. Noda, Generalized Radon transform and Levy's Brownian motion, I, Nagoya Math. J., 105 (1987), 71-87.
  • [20] E. T. Quinto, Null spaces and ranges for the classical and spherical Radon trans- forms, J. Math. Anal. Appl., 90 (1982), 408-420.
  • [21] E. T. Quinto, Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform, J. Math. Anal. Appl., 95 (1983), 437-448.
  • [22] R. S. Strichartz, Radon inversion–variations on a theme, Amer. Math. Monthly, 89 (1982), 377-384 and 420-423.
  • [23] S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric spaces of constant curvature, Nagoya Math. J., 82 (1981), 131-140.
  • [24] S. Takenaka, Representation of Euclidean random field, Nagoya Math. J., 105 (1987),19-31.
  • [25] A. M. Yaglom, Some classes of random fields in n-dimensional space related to stationary random processes, Theory Probab. Appl., 2 (1957), 273-320.
  • [26] L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly, 87 (1980), 161-175. Department of Mathematics Achi University of Education Kariya UU8 Japan

See also

  • See also: Akio Noda. Generalized Radon transform and Lévy's Brownian motion. I. Nagoya Mathematical Journal vol. 105, (1987), pp. 71-87.