Nagoya Mathematical Journal

Generalized Radon transform and Lévy's Brownian motion. I

Akio Noda

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 105 (1987), 71-87.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118780639

Mathematical Reviews number (MathSciNet)
MR0881009

Zentralblatt MATH identifier
0592.60066

Subjects
Primary: 60G60: Random fields
Secondary: 44A15: Special transforms (Legendre, Hilbert, etc.) 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 60G15: Gaussian processes 60J65: Brownian motion [See also 58J65]

Citation

Noda, Akio. Generalized Radon transform and Lévy's Brownian motion. I. Nagoya Math. J. 105 (1987), 71--87. https://projecteuclid.org/euclid.nmj/1118780639


Export citation

References

  • [1] P. Assouad, Produit tensoriel, distances extremales et realisation de covariance, I et II, C. R. Acad. Sci. Paris Ser. A, 288 (1979), 649-652 et 675-677.
  • [2] P. Assouad et M. Deza, Espaces metriques plongeables dans un hypercube Aspects combinatories, Ann. Discrete Math., 8 (1980), 197-210.
  • [3] P. Assouad and M. Deza, Metric subspaces of L1, Publications math. d'Orsay, Universite de Paris-Sud, 1982.
  • [4] S. Campi, On the reconstruction of a function on a sphere by its integrals over great circles, Boll. Un. Math. Ital. (5), 18-c (1981), 195-215.
  • [5] P. Cartier, Une etude des covariances measurables, Math. Analysis and Applica- tions, Part A, Advances in Math. Supplementary Studies, 7A (1981), 267-316.
  • [6] N. N. Chentsov, Levy Brownian motion for several parameters and generalized white noise, Theory Probab. Appl., 2 (1957), 265-266 (English translation).
  • [7] A. M. Cormack and E. T. Quinto,A Radon transform on spheres through the origin in Rn and applications to the Darboux equation, Trans. Amer. Math. Soc, 260 (1980), 575-581.
  • [8] S. R. Deans, The Radon transform and some of its applications, John Wiley Sons, New York, 1983.
  • [9] P. Diaconis and R. L. Graham, The Radon transform on Z, Pacific J. Math., 118 (1985), 323-345.
  • [10] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcen- dental functions (Bateman manuscript project), Vol. II., McGraw-Hill, New York, 1953.
  • [11] P. Funk, Uber Flachen mit lauter geschlossenen geodatischen Linien, Math. Ann., 74 (1913), 278-300.
  • [12] P. Funk, Uber eine geometrische Anwendung der Abelschen Integralgleichung, Math. Ann., 77 (1916), 129-135.
  • [13] R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Levy's Brownian motion of several parameters, Ann. Inst. H. Poincare Sect. B, 3 (1967), 121-225.
  • [14] R. L. Graham, On isometric embeddings of graphs, in Progress in graph theory (J. A. Bondy and U.S.R. Murty, ed.), Academic Press, New York, 1984, 307-322.
  • [15] S. Helgason, The Radon transform, Birkhauser, Boston, 1980.
  • [16] T. Hida and M. Hitsuda, Gaussian processes (in Japanese), Kinokuniya, Tokyo, 1976.
  • [17] K. Karhunen, Uber lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae Ser. A, I. Math. Phys., 37 (1947), 79 pp.
  • [18] J. B. Kelly, Hypermetric spaces, in The geometry of metric and linear spaces, Lecture Notes in Math., No. 490, Springer-Verlag, Berlin, 1975, 17-31.
  • [19] P. Levy, Problemes concrete d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951.
  • [20] P. Levy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1965.
  • [21] P. Levy, Le mouvement brownien function d'un point de la sphere de Riemann, Rend. Circ. Mat. Palermo (2), 8 (1959), 1-14.
  • [22] M. A. Lifshits, On representation of Levy's fields by indicators, Theory Probab. Appl., 24 (1979), 629-633 (English translation).
  • [23] D. Ludwig, The Radon transform on Euclidean space, Comm. Pure Appl. Math., 19 (1966), 49-81.
  • [24] H. P. McKean, Brownian motion with a several-dimensional time, Theory Probab. Appl., 8 (1963), 335-354.
  • [25] G. M. Molcan, The Markov property of Levy fields on spaces of constant curvature, Soviet Math. Dokl., 16 (1975), 528-532.
  • [26] E. A. Morozova and N. N. Chentsov, P. Levy's random fields, Theory Probab. Appl., 13 (1968), 153-156 (English translation).
  • [27] A. Noda, Levy's Brownian motion Total positivity structure of M(t)–process and deterministic character, Nagoya Math. J., 94 (1984), 137-164.
  • [28] E. T. Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc, 257 (1980), 331-346.
  • [29] E. T. Quinto, Null spaces and ranges for the classical and spherical Radon transforms, J. Math. Anal. Appl., 90 (1982), 408-420.
  • [30] E. T. Quinto, Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform, J. Math. Anal. Appl., 95 (1983), 437-448.
  • [31] J. Radon, Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math.-Nat. kl., 69 (1917), 262-277.
  • [32] R. Schneider, Uber eine Integralgleichung in der Theorie der konvexen Korper, Math. Nachr., 44 (1970), 55-75.
  • [33] R. T. Seeley, Spherical harmonics, Amer. Math. Monthly, 73 (1966), 115-121.
  • [34] R. S. Strichartz, Radon inversion–variations on a theme, Amer. Math. Monthly, 89 (1982), 377-384 and 420-423.
  • [35] S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric spaces of constant curvature, Nagoya Math. J., 82 (1981), 131-140. Department of Mathematics Aichi University of Education Kariya UU8 Japan

See also

  • See also: Akio Noda. Generalized Radon transform and Lévy's Brownian motion. II. Nagoya Mathematical Journal vol. 105, (1987), pp. 89-107.