Nagoya Mathematical Journal
- Nagoya Math. J.
- Volume 104 (1986), 1-28.
Singular del Pezzo surfaces and analytic compactifications of $3$-dimensional complex affine space ${\bf C}^3$
Full-text: Open access
Article information
Source
Nagoya Math. J., Volume 104 (1986), 1-28.
Dates
First available in Project Euclid: 14 June 2005
Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118780549
Mathematical Reviews number (MathSciNet)
MR0868434
Zentralblatt MATH identifier
0612.14037
Subjects
Primary: 32J05: Compactification of analytic spaces
Secondary: 14J15: Moduli, classification: analytic theory; relations with modular forms [See also 32G13] 14J25: Special surfaces {For Hilbert modular surfaces, see 14G35} 32J10: Algebraic dependence theorems
Citation
Furushima, Mikio. Singular del Pezzo surfaces and analytic compactifications of $3$-dimensional complex affine space ${\bf C}^3$. Nagoya Math. J. 104 (1986), 1--28. https://projecteuclid.org/euclid.nmj/1118780549
References
- [1] E. Bombieri and D. Husemoller, Classifications and embeddings of surfaces, Algebraic Geometry, Arcata 1974, Amer. Math. Soc. Proc. Symp. Math.,Providence, 29 (1975), 329-420.
- [2] L. Brenton, Some algebraicity criteria for singular surfaces, Invent. Math., 4 (1977), 129-144.Mathematical Reviews (MathSciNet): MR57:3457
Zentralblatt MATH: 0337.32010
Digital Object Identifier: doi:10.1007/BF01418372 - [3] L. Brenton, On singular complex surfaces with negative canonical bundle, with appli- cations to singular compactifications of C2 and to 3-dimensional rational singu- larities, Math. Ann., 248 (1980), 117-124.Mathematical Reviews (MathSciNet): MR81h:32033
Zentralblatt MATH: 0407.14013
Digital Object Identifier: doi:10.1007/BF01421952 - [4] L. Brenton, D. Drucker and G. C. E. Prince, Graph theoretic techniques in algebraic geometry II Construction of singular complex surfaces of rational cohomology type of CP2 Comment. Math. Helv., 56 (1981), 39-58.Mathematical Reviews (MathSciNet): MR84e:32026b
Zentralblatt MATH: 0506.14026
Digital Object Identifier: doi:10.1007/BF02566197 - [5] L. Brenton and J. Morrow, Compactifications of Cn Trans. Amer. Math. Soc, 246 (1979), 139-158.
- [6] M. Demazure, Surfaces de Del Pezzo, Lecture Note, in Math., 777 (1980), 23-69, Springer-Verlag Berlin Heidelberg New York.Mathematical Reviews (MathSciNet): MR82d:14021
- [7] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Pure and Applied Math., John Wiley and Sons, New York, 1978.
- [8] R. Hartshorne, Algebraic Geometry, Graduate Texts in math. 52, Springer-Verlag, New York Heidelberg Berlin, 1977.Mathematical Reviews (MathSciNet): MR57:3116
- [9] F. Hidaka and K. Watanabe, Normal Gorenstein surfaces with ample anti- canonical divisor, Tokyo J. Math., 4 (1981), 319-330.Mathematical Reviews (MathSciNet): MR83h:14031
Zentralblatt MATH: 0496.14023
Digital Object Identifier: doi:10.3836/tjm/1270215157 - [10] F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren der math. Wissenschaften 131, Springer-Verlag Berlin Heidelberg New York, 1966.
- [11] V. A. Iskovski, Fano 3-fold I, Math. U.S.S.R. Izvestija, 11 (1977), 485-527.
- [lla] V. A. Iskovski, Anticanonical models of three-dimensional algebraic varieties, J. Soviet Math., 13-14 (1980), 745-814.
- [12] K. Kodaira, On compact analytic surfaces II, Ann. Math., 77 (1963), 536-626.
- [13] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., 13 (1973), 31-47.Mathematical Reviews (MathSciNet): MR47:5293
Zentralblatt MATH: 0261.32013
Project Euclid: euclid.kjm/1250523432 - [14] H. Laufer, Normal Two-Dimensional Singularities, Ann. Math., Studies 71,1971.
- [15] J. Morrow, Minimal normal compactifications of C2, Proc. conf. of Complex Analysis, Rice Univ. Studies, 59 (1973), 97-112.Mathematical Reviews (MathSciNet): MR48:11580
- [16] D. Mumford, Varieties defined by quadratic equations, Questions on algebraic varieties, Edizioni Cremonese, Rome, 1970, 63-82.
- [17] R. Remmert and T. Van de Ven, Zwei Satze uber die komplex-projektive ebene, Niew Arch. Wisk., 8 (3) (1960), 147-157.
- [18] B. Saint-Donat, Projective model of K3 surfaces, Amer. J. Math., 96 (1974), 602- 639.Mathematical Reviews (MathSciNet): MR51:518
Zentralblatt MATH: 0301.14011
Digital Object Identifier: doi:10.2307/2373709 - [19] K. Saito, Einfach-elliptische Singularitaten, Invent. Math., 23 (1974), 289-325.Mathematical Reviews (MathSciNet): MR50:7147
Zentralblatt MATH: 0296.14019
Digital Object Identifier: doi:10.1007/BF01389749 - [20] P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math., 92 (1970), 419-454, Kumamoto Radio TechnicalCollege 2659-2, Suya, Nishigoshi-machi, Kikuchi-gun, Kumamoto 861-11 JapanMathematical Reviews (MathSciNet): MR45:264
Zentralblatt MATH: 0204.54501
Digital Object Identifier: doi:10.2307/2373333

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Log del Pezzo surfaces of rank one containing the affine plane
Kojima, Hideo and Takahashi, Takeshi, Nihonkai Mathematical Journal, 2018 - Normal Gorenstein del Pezzo surfaces with quasi-lines
Yamasaki, Mitsuhiro, Hiroshima Mathematical Journal, 2007 - Cox rings of degree one del Pezzo surfaces
Testa, Damiano, Várilly-Alvarado, Anthony, and Velasco, Mauricio, Algebra & Number Theory, 2009
- Log del Pezzo surfaces of rank one containing the affine plane
Kojima, Hideo and Takahashi, Takeshi, Nihonkai Mathematical Journal, 2018 - Normal Gorenstein del Pezzo surfaces with quasi-lines
Yamasaki, Mitsuhiro, Hiroshima Mathematical Journal, 2007 - Cox rings of degree one del Pezzo surfaces
Testa, Damiano, Várilly-Alvarado, Anthony, and Velasco, Mauricio, Algebra & Number Theory, 2009 - On the projective embeddings of Gorenstein toric del Pezzo surfaces
Kikuchi, T. and Nakano, T., Illinois Journal of Mathematics, 2009 - $R$-EQUIVALENCE ON DEL PEZZO SURFACES OF DEGREE $4$ AND CUBIC
SURFACES
Tian, Zhiyu, Taiwanese Journal of Mathematics, 2015 - Compact moduli spaces of Del Pezzo surfaces and Kähler–Einstein metrics
Odaka, Yuji, Spotti, Cristiano, and Sun, Song, Journal of Differential Geometry, 2016 - Weak del Pezzo surfaces with irregularity
SchrÖer, Stefan, Tohoku Mathematical Journal, 2007 - Algebraic Montgomery-Yang problem: the log del Pezzo surface case
HWANG, DongSeon and KEUM, JongHae, Journal of the Mathematical Society of Japan, 2014 - Rank one log del Pezzo surfaces of index two
Kojima, Hideo, Journal of Mathematics of Kyoto University, 2003 - Del Pezzo surfaces and representation theory
Serganova, Vera and Skorobogatov, Alexei, Algebra & Number Theory, 2007