Nagoya Mathematical Journal

Functional equations of iterated integrals with regular singularities

Zdzisław Wojtkowiak

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 142 (1996), 145-159.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118772047

Mathematical Reviews number (MathSciNet)
MR1399471

Zentralblatt MATH identifier
0870.11071

Subjects
Primary: 14F35: Homotopy theory; fundamental groups [See also 14H30]
Secondary: 14E99: None of the above, but in this section 33B10: Exponential and trigonometric functions

Citation

Wojtkowiak, Zdzisław. Functional equations of iterated integrals with regular singularities. Nagoya Math. J. 142 (1996), 145--159. https://projecteuclid.org/euclid.nmj/1118772047


Export citation

References

  • [1] P. Deligne, Theorie de Hodge II, Publ. Math. IHES, No 40 (1971), 5-58.
  • [2] C. J. Hill, Specimen exercitti analytici, functionum integralumj –log(l H Jox 2.r cos a-f-.z) turn secundum amplitudinem, turn secundum modulum comparandi exhibentis, Lund, 9 (1830).
  • [3] H. Hironaka, Resolution of singularities of an algebraic variety over a field of char- acteristic zero I II, Ann. of Math., 79 (1964) n 1 and n 2.
  • [4] L. Lewin, The Evolution of the Ladder Concept, 1-10 in Structural Properties of Polylogarithms, Mathematical Surveys and Monographs, vol. 37, AMS, 1991.
  • [5JZ.Wo] tkowiak, The Basic Structure of Polylogarithmic Functional Equations, 205 – 231 in Structural Properties of Polylogarithms, L. Lewin, Editor, Mathema- tical Surveys and Monographs, vol. 37, AMS, 1991.
  • [6] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Pure and Ap- plied Mathematics, XIII, Interscience Publ, 1966.