Nagoya Mathematical Journal

Kontsevich's integral for the Kauffman polynomial

Thang Tu Quoc Le and Jun Murakami

Full-text: Open access

Article information

Source
Nagoya Math. J. Volume 142 (1996), 39-65.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118772043

Mathematical Reviews number (MathSciNet)
MR1399467

Zentralblatt MATH identifier
0866.57008

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 11M99: None of the above, but in this section

Citation

Le, Thang Tu Quoc; Murakami, Jun. Kontsevich's integral for the Kauffman polynomial. Nagoya Math. J. 142 (1996), 39--65.https://projecteuclid.org/euclid.nmj/1118772043


Export citation

References

  • [1] D. Altschuler, A. Coste, Quasi-quantum groups, knots, three-manifolds, and topolo- gical field theory, Commun. Math. Phys., 150 (1992), 83-107.
  • [2] V. I. Arnol'd The First European Congress of Mathematics, Paris July 1992, Birk- hauser 1993, Basel.
  • [3] D. Bar-Natan, On the Vassiliev knot invariants, Topology, 34 (1995), 423-472.
  • [4] J. S. Birman and X. S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math., Ill (1993), 225-270.
  • [5] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc, 83 (1977), 831-879.
  • [6] V. G. Drinfed, On Quasi-Hopf algebras, Leningrad Math. J., 1 (1990) 1419- 1457.
  • [7] V. G. Drinfed, On quasitriangular quasi-Hopf algebras and a group closely connected with GaKQ/Q), Leningrad Math.J., 2 (1990), 829-860.
  • [8] V. A. Golubeva, On the recovery of a Pfaffian system of Fuchsian type from the generators of the monodromy group, Math. USSR Izvestija, 17 (1981), 227–241.
  • [9] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 375-407.
  • [10] R. Kirby, P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C), Invent. Math., 105 (1991), 473-545.
  • [11] T. Kohno, Hecke algebra representations of braid groups and classical Yang- Baxter equations, Conformal field theory and solvable lattice models (Kyoto, 1986), Adv. Stud. Pure Math., 16 (1986), 255-269.
  • [12] M. Kontsevich, Vassiliev's knot invariants, Advances in Soviet Mathematics, 16 (1993), 137-150.
  • [13] T.Q.T. Le, J. Murakami, Kontsevich's integral for HOMFLY polynomial and relation between values of multiple zeta functions, Topology Appl., 62 (1995), 193-206.
  • [14] T.Q.T. Le, Representation of tangles by Kontsevich's integral, Commun. Math. Phys., 168 (1995), 535-562.
  • [15] X. S. Lin, Vertex models, quantum groups and Vassiliev's knot invariants, Col- umbia University, preprint 1992.
  • [16] S. A. Piunikhin, Weight of Feynman diagrams, link polynomials and Vassiliev knot invariants, preprint Moscow 1992.
  • [17] N. Yu. Reshetikhim, Quantized universal enveloping algebras, the Yang-Baxter equations and invariant of links, I, II, Preprints E-87, E-88, Leningrad LOMI, 1988.
  • [18] N. Yu. Reshetikhim, Quasitriangular Hopf algebras and invariants of tangles, Leningrad J. Math., 1 (1990), 491-513.
  • [19] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., 127 (1990), 262-288.
  • [20] T. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math., 92 (1988), 527-553.
  • [21] T. G. Turaev, Operator invariants of tangles and i-matrices, Math. USSR Izv., 35 (1990), 411-444.