Nagoya Mathematical Journal

Siegel modular forms and theta series attached to quaternion algebras. II, With errata to: "Siegel modular forms and theta series attached to quaternion algebras''

S. Böcherer and R. Schulze-Pillot

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 147 (1997), 71-106.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118771503

Mathematical Reviews number (MathSciNet)
MR1475167

Zentralblatt MATH identifier
0924.11033

Subjects
Primary: 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
Secondary: 11F27: Theta series; Weil representation; theta correspondences 11F55: Other groups and their modular and automorphic forms (several variables)

Citation

Böcherer, S.; Schulze-Pillot, R. Siegel modular forms and theta series attached to quaternion algebras. II, With errata to: "Siegel modular forms and theta series attached to quaternion algebras''. Nagoya Math. J. 147 (1997), 71--106. https://projecteuclid.org/euclid.nmj/1118771503


Export citation

References

  • [1] S. Bcherer, Siegel modular forms and theta series, Proc. Symp. Pure Math. 49, 2 (1989), pp. 3-17.
  • [2] S. Bcherer, Uberdie Fourier-Jacobi Entwicklung der Siegelschen Eisensteinreihen II, Mathem. Z., 189 (1989), 81-110.
  • [3] S. Bcherer, T. Satoh and T. Yamazaki, On the pullback of a differential operator and its applicationto vector valuedEisenstem series, Comm. Math. Univ. S. Pauli, 41 (1992), 1-22.
  • [4] S. Bcherer and C. G. Schmidt, p-adic measures attached to Siegel modular forms, Preprint 1995, to appear in Ann. Inst. Fourier.
  • [5] S. Bcherer and R. Schulze-Pillot, Siegelmodular forms and theta series attachedto quaternion algebras, Nagoya Math. J., 121 (1991), 35-96.
  • [6] S. Bcherer and R. Schulze-Pillot, Mellin transforms of vector valued theta series attachedto quaternion algebras, Math. Nachr., 169 (1994), 31-57.
  • [7] S. Bcherer and R. Schulze-Pillot, On the central critical value of the triple product L-function, Number Theory (Sem. de Th. de Nombres Paris 1993-1994) (S. David, ed.), Cambridge (1996), pp. 1-46.
  • [8] M. Eichler, The basisproblemfor modular forms and the traces of the Hecke opera- tors,Modular functions of one variable I, Lecture Notes Math., 320, Springer-Verlag, Berlin-Heidelberg-New York (1973), pp. 76-151.
  • [9] S. A. Evdokimov, Action of the irregular Hecke operator of index p on the theta series of a quadratic form, J. Sov. Math., 38 (1987), 2078-2081.
  • [10] E. Freitag, Lecture Notes Math., 1487, Springer-Verlag, Berlin-Heidelberg (1991).
  • [11] P. Garrett, Decomposition of Eisenstem series Rankin triple products, Annals of Math., 125 (1987), 209-235.
  • [12] R. Godement, Seminaire Cartan 10 (1957/58), Exp. 4-9.
  • [13] K. Hashimoto, On Brandt matrices of Eichler orders, Memoirs of the School of Science and Engineering Waseda University, 59 (1995), 143-165.
  • [14] H. Hijikata and H. Saito, On the representabilityof modular forms by theta series, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Ak- izuki (1973), pp. 13-21.
  • [15] R. Howe and I. I. Piatetski-Shapiro, Some examples of automorphicforms on Sp4, Duke Math. J., 50 (1983), 55-106.
  • [16] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variablesin the ClassicalDomain, Translations of Mathematical Monographs, 6 (1963), AMS.
  • [17] T. Ibukiyama, On differential operatorson automorphic forms and invariant pluri- harionic polynomials. Preprint (1990).
  • [18] H. Jacquet and R. Langlands, Lect. Notes in Math., 114, Springer-Verlag, Berlin- Heidelberg-New York (1970).
  • [19] M.Kashiwara and M.Vergne, On the Segal-Shale-Weil representationsand harmonic polynomials, Invent. Math., 44 (1987), 1-44.
  • [20] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge, 1993.
  • [21] H. Klingen, IntroductoryLectures on Siegel Modular Forms, Cambridge University Press, 1990.
  • [22] H. Maa, Sieges modular forms and Dirichlet series, Lect. Notes Math., 216, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
  • [23] A. Ogg, On a convolution of L-series, Invent. Math., 7 (1969), 279-312.
  • [24] F. Shahidi, On certain L-functions, Amer. J. Math., 103, 297-355.
  • [25] H. Shimizu, Theta series and automorphic forms on GL2, J. of the Math. Soc. of Japan, 24 (1972), 638-683.
  • [26] R. Schulze-Pillot, An algorithm for computing genera of ternary and quaternary quadratic forms, Proceedings of the International Symposium on Symbolic and Al- gebraic computation, (ISSAC) Bonn (1991), pp. 134-143.
  • [27] N.-P.Skoruppa, Computations of Siegel modular forms of genus two, Math. Comp., 58 (1992), 381-398.
  • [28] H.Takayanagi, Vector valuedSiegel modularforms and their L-functions application of a differential operator, Japan. J. Math., 19 (1994), 251-297.
  • [29] R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichts,J. f. d. reine u. angew. Math., 343 (1983), 184-202.
  • [30] H. Yoshida, Sieges modular forms and the arithmetic of quadratic forms, Invent. math., 60 (1980), 193-248.
  • [31] H. Yoshida, On Siegel modular forms obtained from theta series, J. f. d. reine u. angew. Math., 352 (1984), 184-219. Fakulttfur Mathematik und Informatik Universitt Mannheim Seminargebude A5, D-68131Mannheim Germany boechOmath.uni-mannheim.de R. Schulze-Pillot Fachbereich Mathematik Universitt desSaarlandes Postfach 151150, D-66O4I Saarbrcken Germany schulzepmath.uni-sb.de

See also

  • See also: S. Böcherer, R. Schulze-Pillot. Siegel modular forms and theta series attached to quaternion algebras. Nagoya Mathematical Journal vol. 121, (1991), pp. 35-96.